93 resultados para Cortical excitability
Resumo:
Patients in intensive care units frequently suffer muscle weakness and atrophy due to critical illness polyneuropathy (CIP), an axonal neuropathy associated with systemic inflammatory response syndrome and multiple organ failure. CIP is a frequent and serious complication of intensive care that delays weaning from mechanical ventilation and increases mortality. The pathogenesis of CIP is not well understood and no specific therapy is available. The aim of this project was to use nerve excitability testing to investigate the changes in axonal membrane properties occurring in CIP. Ten patients (aged 37-76 years; 7 males, 3 females) were studied with electrophysiologically proven CIP. The median nerve was stimulated at the wrist and compound action potentials were recorded from abductor pollicis brevis muscle. Strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle (refractoriness, superexcitability and late subexcitability) were recorded using a recently described protocol. In eight patients a follow-up investigation was performed. All patients underwent clinical examination and laboratory investigations. Compared with age-matched normal controls (20 subjects; aged 38-79 years; 7 males, 13 females), CIP patients exhibited reduced superexcitability at 7 ms, from -22.3 +/- 1.6% to -7.6 +/- 3.1% (mean +/- SE, P approximately 0.0001) and increased accommodation to depolarizing (P < 0.01) and hyperpolarizing currents (P < 0.01), indicating membrane depolarization. Superexcitability was reduced both in patients with renal failure and without renal failure. In the former, superexcitability correlated with serum potassium (R = 0.88), and late subexcitability was also reduced (as also occurs owing to hyperkalaemia in patients with chronic renal failure). In patients without renal failure, late subexcitability was normal, and the signs of membrane depolarization correlated with raised serum bicarbonate and base excess, indicating compensated respiratory acidosis. It is inferred that motor axons in these CIP patients are depolarized, in part because of raised extracellular potassium, and in part because of hypoperfusion. The chronic membrane depolarization may contribute to the development of neuropathy.
Resumo:
Desferrioxamine inhibits cortical necrosis in neonatal rats with experimental pneumococcal meningitis, suggesting that iron-induced oxidative damage might be responsible for neuronal damage. We therefore examined the spatial and temporal profile of changes in cortical iron and iron homeostatic proteins during pneumococcal meningitis. Infection was associated with a steady and global increase of non-haem iron in the cortex, particularly in neuronal cell bodies of layer II and V, and in capillary endothelial cells. The non-haem iron increase was associated with induction of haem oxygenase (HO)-1 in neurones, microglia and capillary endothelial cells, whereas HO-2 levels remained unchanged, suggesting that the non-haem iron increase might be the result of HO-1-mediated haem degradation. Indeed, treatment with the haem oxygenase inhibitor tin protoporphyrin (which completely blocked the accumulation of bilirubin detected in HO-1-positive cells) completely prevented the infection-associated non-haem iron increase. The same cells also displayed markedly increased ferritin staining, the increase of which occurred independently of HO activity. At the same time, no increase in DNA/RNA oxidation was observed in infected animals (as assessed by in situ detection of 8-hydroxy[deoxy]guanosine), strongly suggesting that ferritin up-regulation protected the brain from iron-induced oxidative damage. Thus, although pneumococcal meningitis leads to an increase of cortical non-haem iron, protective mechanisms up-regulated in parallel prevent iron-induced oxidative damage. Cortical damage does not appear to be a direct consequence of increased iron, therefore.
Resumo:
Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.
Resumo:
The primary visual cortex (V1) is pre-wired to facilitate the extraction of behaviorally important visual features. Collinear edge detectors in V1, for instance, mutually enhance each other to improve the perception of lines against a noisy background. The same pre-wiring that facilitates line extraction, however, is detrimental when subjects have to discriminate the brightness of different line segments. How is it possible to improve in one task by unsupervised practicing, without getting worse in the other task? The classical view of perceptual learning is that practicing modulates the feedforward input stream through synaptic modifications onto or within V1. However, any rewiring of V1 would deteriorate other perceptual abilities different from the trained one. We propose a general neuronal model showing that perceptual learning can modulate top-down input to V1 in a task-specific way while feedforward and lateral pathways remain intact. Consistent with biological data, the model explains how context-dependent brightness discrimination is improved by a top-down recruitment of recurrent inhibition and a top-down induced increase of the neuronal gain within V1. Both the top-down modulation of inhibition and of neuronal gain are suggested to be universal features of cortical microcircuits which enable perceptual learning.
Resumo:
Ezrin, radixin and moesin (ERM) proteins are widely distributed proteins located in the cellular cortex, in microvilli and adherens junctions. They feature an N-terminal membrane binding domain linked by an alpha-helical domain to the C-terminal actin-binding domain. In the dormant state, binding sites in the N-terminal domain are masked by interactions with the C-terminal region. The alpha-helical domain also contributes to masking of binding sites. A specific sequence of signaling events results in dissociation of these intramolecular interactions resulting in ERM activation. ERM molecules have been implicated in mediating actin-membrane linkage and in regulating signaling molecules. They are involved in cell membrane organization, cell migration, phagocytosis and apoptosis, and may also play cell-specific roles in tumor progression. Their precise involvement in these processes has yet to be elucidated.
Resumo:
Three Bavarian mountain dogs aged between 18 and 20 months, not related to each other, were presented with chronic signs of cerebellar dysfunction. On sagittal T2-weighted magnetic resonance imaging brain images, the tentative diagnosis of cerebellar hypoplasia was established based on an enlarged cerebrospinal fluid space around the cerebellum and an increased cerebrospinal fluid signal between the folia. Post-mortem examination was performed in one dog and did show an overall reduction of cerebellar size. On histopathologic examination, a selective loss of cerebellar granule cells with sparing of Purkinje cells was evident. Therefore, the Bavarian mountain dog is a breed where cerebellar cortical degeneration caused by the rather exceptional selective granule cell loss can be seen as cause of chronic, slowly progressive cerebellar dysfunction starting at an age of several months.
Resumo:
Functional magnetic resonance imaging (fMRI) studies can provide insight into the neural correlates of hallucinations. Commonly, such studies require self-reports about the timing of the hallucination events. While many studies have found activity in higher-order sensory cortical areas, only a few have demonstrated activity of the primary auditory cortex during auditory verbal hallucinations. In this case, using self-reports as a model of brain activity may not be sensitive enough to capture all neurophysiological signals related to hallucinations. We used spatial independent component analysis (sICA) to extract the activity patterns associated with auditory verbal hallucinations in six schizophrenia patients. SICA decomposes the functional data set into a set of spatial maps without the use of any input function. The resulting activity patterns from auditory and sensorimotor components were further analyzed in a single-subject fashion using a visualization tool that allows for easy inspection of the variability of regional brain responses. We found bilateral auditory cortex activity, including Heschl's gyrus, during hallucinations of one patient, and unilateral auditory cortex activity in two more patients. The associated time courses showed a large variability in the shape, amplitude, and time of onset relative to the self-reports. However, the average of the time courses during hallucinations showed a clear association with this clinical phenomenon. We suggest that detection of this activity may be facilitated by examining hallucination epochs of sufficient length, in combination with a data-driven approach.
Resumo:
In the human brain, cortical GABAergic interneurons represent an important population of local circuit neurons responsible for the intrinsic modulation of neuronal information and have been supposed to be involved in the pathophysiology of schizophrenia. We conducted a quantitative study on the differentiated three-dimensional morphological structure of two types of parvalbumin-immunoreactive interneurons in the anterior cingulate cortex (ACC) of schizophrenic patients versus controls. While type A interneurons ('small bipolar cells') showed a significant reduction of their soma size in schizophrenics, type B interneurons ('small multipolar cells') of schizophrenic patients exhibited a marked decrease in the extent of their dendritic system. These results further support the assumption of a considerable significance of the ACC, an important limbic relay centre, for the etiopathogenesis of schizophrenic psychoses.
Resumo:
Based on an integrative brain model which focuses on memory-driven and EEG state-dependent information processing for the organisation of behaviour, we used the developmental changes of the awake EEG to further investigate the hypothesis that neurodevelopmental abnormalities (deviations in organisation and reorganisation of cortico-cortical connectivity during development) are involved in the pathogenesis of schizophrenia. First-episode, neuroleptic-naive schizophrenics and their matched controls and three age groups of normal adolescents were studied (total: 70 subjects). 19-channel EEG delta-theta, alpha and beta spectral band centroid frequencies during resting (baseline) and after verbal stimuli were used as measure of the level of attained complexity and momentary excitability of the neuronal network (working memory). Schizophrenics compared with all control groups showed lower delta-theta activity centroids and higher alpha and beta activity centroids. Reactivity centroids (centroid after stimulus minus centroid during resting) were used as measure of update of working memory. Schizophrenics showed partial similarities in delta-theta and beta reactivity centroids with the 11-year olds and in alpha reactivity centroids with the 13-year olds. Within the framework of our model, the results suggest multifactorially elicited imbalances in the level of excitability of neuronal networks in schizophrenia, resulting in network activation at dissociated complexity levels, partially regressed and partially prematurely developed. It is hypothesised that activation of age- and/or state-inadequate representations for coping with realities becomes manifest as productive schizophrenic symptoms. Thus, the results support some aspects of the neurodevelopmental hypothesis.
Resumo:
Neural correlates of electroencephalographic (EEG) alpha rhythm are poorly understood. Here, we related EEG alpha rhythm in awake humans to blood-oxygen-level-dependent (BOLD) signal change determined by functional magnetic resonance imaging (fMRI). Topographical EEG was recorded simultaneously with fMRI during an open versus closed eyes and an auditory stimulation versus silence condition. EEG was separated into spatial components of maximal temporal independence using independent component analysis. Alpha component amplitudes and stimulus conditions served as general linear model regressors of the fMRI signal time course. In both paradigms, EEG alpha component amplitudes were associated with BOLD signal decreases in occipital areas, but not in thalamus, when a standard BOLD response curve (maximum effect at approximately 6 s) was assumed. The part of the alpha regressor independent of the protocol condition, however, revealed significant positive thalamic and mesencephalic correlations with a mean time delay of approximately 2.5 s between EEG and BOLD signals. The inverse relationship between EEG alpha amplitude and BOLD signals in primary and secondary visual areas suggests that widespread thalamocortical synchronization is associated with decreased brain metabolism. While the temporal relationship of this association is consistent with metabolic changes occurring simultaneously with changes in the alpha rhythm, sites in the medial thalamus and in the anterior midbrain were found to correlate with short time lag. Assuming a canonical hemodynamic response function, this finding is indicative of activity preceding the actual EEG change by some seconds.
Resumo:
Fructose-1,6-bisphosphate (FBP), an endogenous intermediate of glycolysis, protects the brain against ischemia-reperfusion injury. The mechanisms of FBP protection after cerebral ischemia are not well understood. The current study was undertaken to determine whether FBP protects primary neurons against hypoxia and oxidative stress by preserving reduced glutathione (GSH). Cultures of pure cortical neurons were subjected to oxygen deprivation, a donor of nitric oxide and superoxide radicals (3-morpholinosydnonimine), an inhibitor of glutathione synthesis (L-buthionine-sulfoximine) or glutathione reductase (1,3-bis(2-chloroethyl)-1-nitrosourea) in the presence or absence of FBP (3.5 mM). Neuronal viability was determined using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. FBP protected neurons against hypoxia-reoxygenation and oxidative stress under conditions of compromised GSH metabolism. The efficacy of FBP depended on duration of hypoxia and was associated with higher intracellular GSH concentration, an effect partly mediated via increased glutathione reductase activity.
Resumo:
Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.