176 resultados para Coronary Heart-disease
Resumo:
Coronary collaterals protect myocardium jeopardized by coronary artery disease (CAD). Promotion of collateral circulation is desirable before myocardial damage occurs. Therefore, determinants of collateral preformation in patients without CAD should be elucidated.
Resumo:
The cause of angina in patients presenting at coronary angiography without significant coronary artery disease (CAD) has not been systematically assessed in a large prospective cohort. This study is aimed to identify the cause of angina in these patients.
Resumo:
AIMS: Data on moderately cold water immersion and occurrence of arrhythmias in chronic heart failure (CHF) patients are scarce. METHODS AND RESULTS: We examined 22 male patients, 12 with CHF [mean age 59 years, ejection fraction (EF) 32%, NYHA class II] and 10 patients with stable coronary artery disease (CAD) without CHF (mean age 65 years, EF 52%). Haemodynamic effects of water immersion and swimming in warm (32 degrees C) and moderately cold (22 degrees C) water were measured using an inert gas rebreathing method. The occurrence of arrhythmias during water activities was compared with those measured during a 24 h ECG recording. Rate pressure product during water immersion up to the chest was significantly higher in moderately cold (P = 0.043 in CHF, P = 0.028 in CAD patients) compared with warm water, but not during swimming. Rate pressure product reached 14200 in CAD and 12 400 in CHF patients during swimming. Changes in cardiac index (increase by 5-15%) and oxygen consumption (increase up to 20%) were of similar magnitude in moderately cold and warm water. Premature ventricular contractions (PVCs) increased significantly in moderately cold water from 15 +/- 41 to 76 +/- 163 beats per 30 min in CHF (P = 0.013) but not in CAD patients (20 +/- 33 vs. 42 +/- 125 beats per 30 min, P = 0.480). No ventricular tachycardia was noted. CONCLUSION: Patients with compensated CHF tolerate water immersion and swimming in moderately cold water well. However, the increase in PVCs raises concerns about the potential danger of high-grade ventricular arrhythmias.
Resumo:
Objective To evaluate the effect of heart rate reduction by ivabradine on coronary collateral function in patients with chronic stable coronary artery disease (CAD). Methods This was a prospective randomised placebo-controlled monocentre trial in a university hospital setting. 46 patients with chronic stable CAD received placebo (n=23) or ivabradine (n=23) for the duration of 6 months. The main outcome measure was collateral flow index (CFI) as obtained during a 1 min coronary artery balloon occlusion at study inclusion (baseline) and at the 6-month follow-up examination. CFI is the ratio between simultaneously recorded mean coronary occlusive pressure divided by mean aortic pressure both subtracted by mean central venous pressure. Results During follow-up, heart rate changed by +0.2±7.8 beats/min in the placebo group, and by –8.1±11.6 beats/min in the ivabradine group (p=0.0089). In the placebo group, CFI decreased from 0.140±0.097 at baseline to 0.109±0.067 at follow-up (p=0.12); it increased from 0.107±0.077 at baseline to 0.152±0.090 at follow-up in the ivabradine group (p=0.0461). The difference in CFI between the 6-month follow-up and baseline examination amounted to −0.031±0.090 in the placebo group and to +0.040±0.094 in the ivabradine group (p=0.0113). Conclusions Heart rate reduction by ivabradine appears to have a positive effect on coronary collateral function in patients with chronic stable CAD.
Resumo:
Aims: To compare clinical outcomes after percutaneous coronary intervention (PCI) between patients with acute coronary syndromes (ACS) and those with stable ischaemic heart disease (SIHD) stratified by anatomic disease complexity (SYNTAX score). Methods and results: Patient-level data from three all-comers PCI trials were pooled. Patients (n=4,204) were stratified by clinical presentation (i.e., ACS or SIHD) and by SYNTAX score (i.e., lowest vs. two highest tertiles). The major adverse cardiac event (MACE) rates of patients with low-risk SIHD (n=531) and high-risk SIHD (n=1,066) were compared with ACS patients (n=2,607), respectively. At two years, the risk of MACE was higher for high-risk SIHD patients (OR 1.34, 95% CI: 1.08-1.66) and lower for low-risk SIHD patients (OR 0.61, 95% CI: 0.43-0.87) compared with ACS patients, respectively. This difference between high-risk SIHD patients and ACS patients was primarily driven by a higher risk of myocardial infarction (OR 1.64, 95% CI: 1.21-2.21), while there was no difference for cardiac death (OR 0.77, 95% CI: 0.49-1.21) or target lesion revascularisation (OR 1.21, 95% CI: 0.91-1.62). Conclusions: In this pooled analysis, the majority of patients undergoing PCI for SIHD (i.e., with SYNTAX score >8) had a higher risk of MACE than patients with ACS. Trial registration: URL: http://www.ClinicalTrials.gov; unique identifier: NCT00297661 (Sirtax), NCT00389220 (Leaders), NCT00114972 (Resolute-AC).
Resumo:
As the population ages, recurrent ventricular tachycardia (VT) is increasingly encountered in elderly patients with ischemic heart disease. Radiofrequency catheter ablation is useful for reducing VT therapy in patients with an implantable defibrillator. The utility of radiofrequency catheter ablation in the elderly is not well defined.
Resumo:
Coronary artery disease remains the leading cause of mortality in most industrialized countries, although age-standardized mortality related to coronary artery disease (CAD) has decreased by more than 40% during the last two decades. Coronary atherosclerosis may cause angina pectoris, myocardial infarction, heart failure, arrhythmia, and sudden death. Medical management of atherosclerosis and its manifestation aims at retardation of progression of plaque formation, prevention of plaque rupture, and subsequent events and treatment of symptoms, when these occur as well as treatment of the sequelae of the disease. Revascularization by either percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG) is performed as treatment of flow-limiting coronary stenosis to reduce myocardial ischaemia. In high-risk patients with acute coronary syndromes (ACS), a routine invasive strategy with revascularization in most patients provides the best outcome with a significant reduction in death and myocardial infarction compared with an initial conservative strategy. Conversely, the benefit of revascularization among patients with chronic stable CAD has been called into question. This review will provide information that revascularization exerts favourable effects on symptoms, quality of life, exercise capacity, and survival, particularly in those with extensive CAD and documented moderate-to-severe ischaemia. Accordingly, CABG and PCI should be considered a valuable adjunct rather than an alternative to medical therapy.
Resumo:
Prevention of coronary artery disease (CAD) and reduction of its mortality and morbidity remains a major public health challenge throughout the "Western world". Recent evidence supports the concept that the impairment of endothelial function, a hallmark of insulin resistance states, is an upstream event in the pathophysiology of insulin resistance and its main corollaries: atherosclerosis and myocardial infarction. Atherosclerosis is currently thought to be the consequence of a subtle imbalance between pro- and anti-oxidants that produces favourable conditions for lesion progression towards acute thrombotic complications and clinical events. Over the last decade, a remarkable burst of evidence has accumulated, offering the new perspective that bioavailable nitric oxide (NO) plays a pivotal role throughout the CAD-spectrum, from its genesis to the outcome after acute events. Vascular NO is a critical modulator of coronary blood flow by inhibiting smooth muscle contraction and platelet aggregation. It also acts in angiogenesis and cytoprotection. Defective endothelial nitric oxide synthase (eNOS) driven NO synthesis causes development of major cardiovascular risk factors (insulin resistance, arterial hypertension and dyslipidaemia) in mice, and characterises CAD-prone insulin-resistant humans. On the other hand, stimulation of inducible nitric oxide synthase (iNOS) and NO overproduction causes metabolic insulin resistance and characterises atherosclerosis, heart failure and cardiogenic shock in humans, suggesting a "Yin-Yang" effect of NO in the cardiovascular homeostasis. Here, we will present a concise overview of the evidence for this novel concept, providing the conceptual framework for developing a potential therapeutic strategy to prevent and treat CAD.
Resumo:
OBJECTIVES: To assess the safety and cardiopulmonary adaptation to high altitude exposure among patients with coronary artery disease. METHODS: 22 patients (20 men and 2 women), mean age 57 (SD 7) years, underwent a maximal, symptom limited exercise stress test in Bern, Switzerland (540 m) and after a rapid ascent to the Jungfraujoch (3454 m). The study population comprised 15 patients after ST elevation myocardial infarction and 7 after a non-ST elevation myocardial infarction 12 (SD 4) months after the acute event. All patients were revascularised either by percutaneous coronary angioplasty (n = 15) or by coronary artery bypass surgery (n = 7). Ejection fraction was 60 (SD 8)%. beta blocking agents were withheld for five days before exercise testing. RESULTS: At 3454 m, peak oxygen uptake decreased by 19% (p < 0.001), maximum work capacity by 15% (p < 0.001) and exercise time by 16% (p < 0.001); heart rate, ventilation and lactate were significantly higher at every level of exercise, except at maximum exertion. No ECG signs of myocardial ischaemia or significant arrhythmias were noted. CONCLUSIONS: Although oxygen demand and lactate concentrations are higher during exercise at high altitude, a rapid ascent and submaximal exercise can be considered safe at an altitude of 3454 m for low risk patients six months after revascularisation for an acute coronary event and a normal exercise stress test at low altitude.
Resumo:
OBJECTIVES: To estimate changes in coronary risk factors and their implications for coronary heart disease (CHD) rates in men starting highly active antiretroviral therapy (HAART). METHODS: Men participating in the Swiss HIV Cohort Study with measurements of coronary risk factors both before and up to 3 years after starting HAART were identified. Fractional polynomial regression was used to graph associations between risk factors and time on HAART. Mean risk factor changes associated with starting HAART were estimated using multilevel models. A prognostic model was used to predict corresponding CHD rate ratios. RESULTS: Of 556 eligible men, 259 (47%) started a nonnucleoside reverse transcriptase inhibitor (NNRTI) and 297 a protease inhibitor (PI) based regimen. Levels of most risk factors increased sharply during the first 3 months on HAART, then more slowly. Increases were greater with PI- than NNRTI-based HAART for total cholesterol (1.18 vs. 0.98 mmol L(-1)), systolic blood pressure (3.6 vs. 0 mmHg) and BMI (1.04 vs. 0.55 kg m(2)) but not HDL cholesterol (0.24 vs. 0.32 mmol L(-1)) or glucose (1.02 vs. 1.03 mmol L(-1)). Predicted CHD rate ratios were 1.40 (95% CI 1.13-1.75) and 1.17 (0.95-1.47) for PI- and NNRTI-based HAART respectively. CONCLUSIONS: Coronary heart disease rates will increase in a majority of patients starting HAART: however the increases corresponding to typical changes in risk factors are relatively modest and could be offset by lifestyle changes.
Resumo:
The coronary artery calcium (CAC) score is a readily and widely available tool for the noninvasive diagnosis of atherosclerotic coronary artery disease (CAD). The aim of this study was to investigate the added value of the CAC score as an adjunct to gated SPECT for the assessment of CAD in an intermediate-risk population. METHODS: Seventy-seven prospectively recruited patients with intermediate risk (as determined by the Framingham Heart Study 10-y CAD risk score) and referred for coronary angiography because of suspected CAD underwent stress (99m)Tc-tetrofosmin SPECT myocardial perfusion imaging (MPI) and CT CAC scoring within 2 wk before coronary angiography. The sensitivity and specificity of SPECT alone and of the combination of the 2 methods (SPECT plus CAC score) in demonstrating significant CAD (>/=50% stenosis on coronary angiography) were compared. RESULTS: Forty-two (55%) of the 77 patients had CAD on coronary angiography, and 35 (45%) had abnormal SPECT results. The CAC score was significantly higher in subjects with perfusion abnormalities than in those who had normal SPECT results (889 +/- 836 [mean +/- SD] vs. 286 +/- 335; P < 0.0001). Similarly, with rising CAC scores, a larger percentage of patients had CAD. Receiver-operating-characteristic analysis showed that a CAC score of greater than or equal to 709 was the optimal cutoff for detecting CAD missed by SPECT. SPECT alone had a sensitivity and a specificity for the detection of significant CAD of 76% and 91%, respectively. Combining SPECT with the CAC score (at a cutoff of 709) improved the sensitivity of SPECT (from 76% to 86%) for the detection of CAD, in association with a nonsignificant decrease in specificity (from 91% to 86%). CONCLUSION: The CAC score may offer incremental diagnostic information over SPECT data for identifying patients with significant CAD and negative MPI results.
Resumo:
BACKGROUND: In patients with coronary artery disease (CAD), a well grown collateral circulation has been shown to be important. The aim of this prospective study using peripheral blood monocytes was to identify marker genes for an extensively grown coronary collateral circulation. METHODS: Collateral flow index (CFI) was obtained invasively by angioplasty pressure sensor guidewire in 160 individuals (110 patients with CAD, and 50 individuals without CAD). RNA was extracted from monocytes followed by microarray-based gene-expression analysis. 76 selected genes were analysed by real-time polymerase chain reaction (PCR). A receiver operating characteristics analysis based on differential gene expression was then performed to separate individuals with poor (CFI<0.21) and well-developed collaterals (CFI>or=0.21) Thereafter, the influence of the chemokine MCP-1 on the expression of six selected genes was tested by PCR. RESULTS: The expression of 203 genes significantly correlated with CFI (p = 0.000002-0.00267) in patients with CAD and 56 genes in individuals without CAD (p = 00079-0.0430). Biological pathway analysis revealed 76 of those genes belonging to four different pathways: angiogenesis, integrin-, platelet-derived growth factor-, and transforming growth factor beta-signalling. Three genes in each subgroup differentiated with high specificity among individuals with low and high CFI (>or=0.21). Two out of these genes showed pronounced differential expression between the two groups after cell stimulation with MCP-1. CONCLUSIONS: Genetic factors play a role in the formation and the preformation of the coronary collateral circulation. Gene expression analysis in peripheral blood monocytes can be used for non-invasive differentiation between individuals with poorly and with well grown collaterals. MCP-1 can influence the arteriogenic potential of monocytes.
Resumo:
AIM: To test whether quantitative stress echocardiography using contrast-based myocardial blood flow (MBF, ml x min(-1) x g(-1)) measurements can detect coronary artery disease in humans. METHODS: 48 patients eligible for pharmacological stress testing by myocardial contrast echocardiography (MCE) and willing to undergo subsequent coronary angiography were prospectively enrolled in the study. Baseline and adenosine-induced (140 microg x kg(-1) x min(-1)) hyperaemic MBF was analysed according to a three-coronary-artery-territory model. Vascular territories were categorised into three groups with increasing stenosis severity defined as percentage diameter reduction by quantitative coronary angiography. RESULTS: Myocardial blood flow reserve (MBFR)-that is, the ratio of hyperaemic to baseline MBF, was obtained in 128 (89%) territories. Mean (SD) baseline MBF was 1.073 (0.395) ml x min(-1) x g(-1) and did not differ between territories supplied by coronary arteries with mild (<50% stenosis), moderate (50%-74% stenosis) or severe (>or=75% stenosis) disease. Mean (SD) hyperaemic MBF and MBFR were 2.509 (1.078) ml x min(-1) x g(-1) and 2.54 (1.03), respectively, and decreased linearly (r2 = 0.21 and r2 = 0.39) with stenosis severity. ROC analysis revealed that a territorial MBFR <1.94 detected >or=50% stenosis with 89% sensitivity and 92% specificity. CONCLUSION: Quantitative stress testing based on MBF measurements derived from contrast echocardiography is a new method for the non-invasive and reliable assessment of coronary artery disease in humans.
Resumo:
BACKGROUND: The aortomitral continuity (AMC) has been described as a site of origin for ventricular tachycardias (VT) in structurally normal hearts. There is a paucity of data on the contribution of this region to VTs in patients with structural heart disease. METHODS AND RESULTS: Data from 550 consecutive patients undergoing catheter ablation for VT associated with structural heart disease were reviewed. Twenty-one (3.8%) had a VT involving the peri-AMC region (age, 62.7+/-11 years; median left ventricular ejection fraction, 43.6+/-17%). Structural heart disease was ischemic in 7 (33%), dilated cardiomyopathy in 10 (47.6%), and valvular cardiomyopathy in 4 (19%) patients, respectively. After 1.9+/-0.8 catheter ablation procedures (including 3 transcoronary ethanol ablations) the peri-AMC VT was not inducible in 19 patients. The remaining 2 patients underwent cryosurgical ablation. Our first catheter ablation procedure was less often successful (66.7%) for peri-AMC VTs compared with that for 246 VTs originating from the LV free wall (81.4%, P=0.03). During a mean follow-up of 1.9+/-2.1 years, 12 (57.1%) patients remained free of VT, peri-AMC VT recurred in 7 patients, and 1 patient had recurrent VT from a remote location. Three patients died. Analysis of 50 normal coronary angiograms demonstrated an early septal branch supplying the peri-AMC area in 58% of cases that is a potential target for ethanol ablation. CONCLUSIONS: VTs involving the peri-AMC region occur in patients with structural heart disease and appear to be more difficult to ablate compared with VTs originating from the free LV wall. This region provides unique challenges for radiofrequency ablation, but cryosurgery and transcoronary alcohol ablation appear feasible in some cases.
Resumo:
Background: Evaluation of health-related quality of life (HRQL) is important in improving the quality of patient care. The aim of this study was to determine the psychometric properties of the HeartQoL in patients with ischemic heart disease (IHD), specifically angina, myocardial infarction (MI), or ischemic heart failure. Methods: Data for the interim validation of the HeartQoL questionnaire were collected in (a) a cross-sectional survey and (b) a prospective substudy of patients undergoing either a percutaneous coronary intervention (PCI) or referred to cardiac rehabilitation (CR) and were then analyzed to determine the reliability, validity, and responsiveness of the HeartQoL questionnaire. Results: We enrolled 6384 patients (angina, n = 2111, 33.1%; MI, n = 2351, 36.8%; heart failure, n = 1922, 30.1%) across 22 countries speaking 15 languages in the cross-sectional study and 730 patients with IHD in the prospective substudy. The HeartQoL questionnaire comprises 14-items with physical and emotional subscales and a global score (range 0–3 (poor to better HRQL). Cronbach’s α was consistently ≥0.80; convergent validity correlations between similar HeartQoL and SF-36 subscales were significant (r ≥ 0.60, p < 0.001); discriminative validity was confirmed with predictor variables: health transition, anxiety, depression, and functional status. HeartQoL score changes following either PCI or CR were significant (p < 0.001) with effect sizes ranging from 0.37–0.64. Conclusion: The HeartQoL questionnaire is reliable, valid, and responsive to change allowing clinicians and researchers to (a) assess baseline HRQL, (b) make between-diagnosis comparisons of HRQL, and (c) evaluate change in HRQL in patients with angina, MI, or heart failure with a single IHD-specific HRQL instrument.