86 resultados para Copper Kings
Resumo:
CopY of Enterococcus hirae is a well characterized copper-responsive repressor involved in copper homeostasis. In the absence of copper, it binds to the promoter. In high copper, the CopZ copper chaperone donates copper to CopY, thereby releasing it from the promoter and allowing transcription of the downstream copper homeostatic genes of the cop operon. We here show that the CopY-like repressors from E. hirae, Lactococcus lactis, and Streptococcus mutans have similar affinities not only for their native promoters, but also for heterologous cop promoters. CopZ of L. lactis accelerated the release of CopY from the promoter, suggesting that CopZ of L. lactis acts as copper chaperone, similar to CopZ in E. hirae. The consensus binding motif of the CopY-like repressors was shown to be TACAxxTGTA. The same binding motif is present in promoters controlled by BlaI of Bacillus licheniformis, MecI of Staphylococcus aureus and related repressors. BlaI and MecI have known structures and belong to the family of 'winged helix' proteins. In the N- terminal domain, they share significant sequence similarity with CopY of E. hirae. Moreover, they bind to the same TACAxxTGTA motif. NMR analysis of the N-terminal DNA binding domain of CopY of L. lactis showed that it contained the same alpha-helical content like the same regions of BlaI and MecI. These findings suggest that the DNA binding domains of CopY-like repressors are also of the 'winged helix' type.
Resumo:
Cytosolic CuZn-SOD (SOD1) is a dimeric, carbohydrate-free enzyme with a molecular weight of about 32 kDa and also circulates in human blood plasma. Due to its molecular mass it has been believed that the enzyme cannot penetrate the cell membrane. Here we report that rapid endocytosis of FITC-CuZn-SOD into human endothelial cells occurs within 5 min. Moreover, relaxation of rat aortic rings in response to CuZn-SOD is associated with a lag time of 45-60 s and only observed in the presence of intact endothelial cells. The results indicate acute and rapid endothelial cell endocytosis of CuZn-SOD, possibly via activation of a receptor-mediated pathway. Intracellular uptake via endocytosis may contribute to the vascular effects of CuZn-SOD, including vasodilation, and is likely to play a role in regulation of vascular tone and diseases such as atherosclerosis.
Resumo:
Cu is an essential nutrient for man, but can be toxic if intakes are too high. In sensitive populations, marginal over- or under-exposure can have detrimental effects. Malnourished children, the elderly, and pregnant or lactating females may be susceptible for Cu deficiency. Cu status and exposure in the population can currently not be easily measured, as neither plasma Cu nor plasma cuproenzymes reflect Cu status precisely. Some blood markers (such as ceruloplasmin) indicate severe Cu depletion, but do not inversely respond to Cu excess, and are not suitable to indicate marginal states. A biomarker of Cu is needed that is sensitive to small changes in Cu status, and that responds to Cu excess as well as deficiency. Such a marker will aid in monitoring Cu status in large populations, and will help to avoid chronic health effects (for example, liver damage in chronic toxicity, osteoporosis, loss of collagen stability, or increased susceptibility to infections in deficiency). The advent of high-throughput technologies has enabled us to screen for potential biomarkers in the whole proteome of a cell, not excluding markers that have no direct link to Cu. Further, this screening allows us to search for a whole group of proteins that, in combination, reflect Cu status. The present review emphasises the need to find sensitive biomarkers for Cu, examines potential markers of Cu status already available, and discusses methods to identify a novel suite of biomarkers.
Resumo:
Lactococcus lactis IL1403, a lactic acid bacterium widely used for food fermentation, is often exposed to stress conditions. One such condition is exposure to copper, such as in cheese making in copper vats. Copper is an essential micronutrient in prokaryotes and eukaryotes but can be toxic if in excess. Thus, copper homeostatic mechanisms, consisting chiefly of copper transporters and their regulators, have evolved in all organisms to control cytoplasmic copper levels. Using proteomics to identify novel proteins involved in the response of L. lactis IL1403 to copper, cells were exposed to 200 muM copper sulfate for 45 min, followed by resolution of the cytoplasmic fraction by two-dimensional gel electrophoresis. One protein strongly induced by copper was LctO, which was shown to be a NAD-independent lactate oxidase. It catalyzed the conversion of lactate to pyruvate in vivo and in vitro. Copper, cadmium, and silver induced LctO, as shown by real-time quantitative PCR. A copper-regulatory element was identified in the 5' region of the lctO gene and shown to interact with the CopR regulator, encoded by the unlinked copRZA operon. Induction of LctO by copper represents a novel copper stress response, and we suggest that it serves in the scavenging of molecular oxygen.
Resumo:
Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.
Resumo:
BACKGROUND ; AIMS: Iron perturbations are frequently observed in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate a potential association of copper status with disturbances of iron homeostasis in NAFLD. METHODS: We retrospectively studied 140 NAFLD patients and 25 control subjects. Biochemical and hepatic iron and copper parameters were analyzed. Hepatic expression of iron regulatory molecules was investigated in liver biopsy specimens by reverse-transcription polymerase chain reaction and Western blot analysis. RESULTS: NAFLD patients had lower hepatic copper concentrations than control subjects (21.9 +/- 9.8 vs 29.6 +/- 5.1 microg/g; P = .002). NAFLD patients with low serum and liver copper concentrations presented with higher serum ferritin levels (606.7 +/- 265.8 vs 224.2 +/- 176.0 mg/L; P < .001), increased prevalence of siderosis in liver biopsy specimens (36/46 vs 10/47 patients; P < .001), and with elevated hepatic iron concentrations (1184.4 +/- 842.7 vs 319.9 +/- 451.3 microg/g; P = .020). Lower serum concentrations of the copper-dependent ferroxidase ceruloplasmin (21.7 +/- 4.1 vs 30.4 +/- 6.4 mg/dL; P < .001) and decreased liver ferroportin (FP-1; P = .009) messenger RNA expression were found in these patients compared with NAFLD patients with high liver or serum copper concentrations. Accordingly, in rats, a reduced dietary copper intake was paralleled by a decreased hepatic FP-1 protein expression. CONCLUSIONS: A significant proportion of NAFLD patients should be considered copper deficient. Our results indicate that copper status is linked to iron homeostasis in NAFLD, suggesting that low copper bioavailability causes increased hepatic iron stores via decreased FP-1 expression and ceruloplasmin ferroxidase activity thus blocking liver iron export in copper-deficient subjects.
Resumo:
The CopA copper ATPase of Enterococcus hirae belongs to the family of heavy metal pumping CPx-type ATPases and shares 43% sequence similarity with the human Menkes and Wilson copper ATPases. Due to a lack of suitable protein crystals, only partial three-dimensional structures have so far been obtained for this family of ion pumps. We present a structural model of CopA derived by combining topological information obtained by intramolecular cross-linking with molecular modeling. Purified CopA was cross-linked with different bivalent reagents, followed by tryptic digestion and identification of cross-linked peptides by mass spectrometry. The structural proximity of tryptic fragments provided information about the structural arrangement of the hydrophilic protein domains, which was integrated into a three-dimensional model of CopA. Comparative modeling of CopA was guided by the sequence similarity to the calcium ATPase of the sarcoplasmic reticulum, Serca1, for which detailed structures are available. In addition, known partial structures of CPx-ATPase homologous to CopA were used as modeling templates. A docking approach was used to predict the orientation of the heavy metal binding domain of CopA relative to the core structure, which was verified by distance constraints derived from cross-links. The overall structural model of CopA resembles the Serca1 structure, but reveals distinctive features of CPx-type ATPases. A prominent feature is the positioning of the heavy metal binding domain. It features an orientation of the Cu binding ligands which is appropriate for the interaction with Cu-loaded metallochaperones in solution. Moreover, a novel model of the architecture of the intramembranous Cu binding sites could be derived.
Resumo:
CopR of Lactococcus lactis is a copper-responsive repressor involved in copper homoeostasis. It controls the expression of a total of 11 genes, the CopR regulon, in a copper-dependent manner. In the absence of copper, CopR binds to the promoters of the CopR regulon. Copper releases CopR from the promoters, allowing transcription of the downstream genes to proceed. CopR binds through its N-terminal domain to a 'cop box' of consensus TACANNTGTA, which is conserved in Firmicutes. We have solved the NMR solution structure of the N-terminal DNA-binding domain of CopR. The protein fold has a winged helix structure resembling that of the BlaI repressor which regulates antibiotic resistance in Bacillus licheniformis. CopR differs from other copper-responsive repressors, and the present structure represents a novel family of copper regulators, which we propose to call the CopY family.
Resumo:
Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.