32 resultados para Continuous flow injection system, FIAlab 2600


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice cores provide a robust reconstruction of past climate. However, development of timescales by annual-layer counting, essential to detailed climate reconstruction and interpretation, on ice cores collected at low-accumulation sites or in regions of compressed ice, is problematic due to closely spaced layers. Ice-core analysis by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) provides sub-millimeter-scale sampling resolution (on the order of 100μm in this study) and the low detection limits (ng L–1) necessary to measure the chemical constituents preserved in ice cores. We present a newly developed cryocell that can hold a 1m long section of ice core, and an alternative strategy for calibration. Using ice-core samples from central Greenland, we demonstrate the repeatability of multiple ablation passes, highlight the improved sampling resolution, verify the calibration technique and identify annual layers in the chemical profile in a deep section of an ice core where annual layers have not previously been identified using chemistry. In addition, using sections of cores from the Swiss/Italian Alps we illustrate the relationship between Ca, Na and Fe and particle concentration and conductivity, and validate the LA-ICP-MS Ca profile through a direct comparison with continuous flow analysis results.