45 resultados para Container Terminal and simulation
Resumo:
In-depth molecular investigation of familial leukemia has been limited by the rarity of recognized cases. This study examines the genetic events initiating leukemia and details the clinical progression of disease across multiple families harboring germ-line CEBPA mutations. Clinical data were collected from 10 CEBPA-mutated families, representing 24 members with acute myeloid leukemia (AML). Whole-exome (WES) and deep sequencing were performed to genetically profile tumors and define patterns of clonal evolution. Germline CEBPA mutations clustered within the N-terminal and were highly penetrant, with AML presenting at a median age of 24.5 years (range, 1.75-46 years). In all diagnostic tumors tested (n = 18), double CEBPA mutations (CEBPAdm) were detected, with acquired (somatic) mutations preferentially targeting the C-terminal. Somatic CEBPA mutations were unstable throughout the disease course, with different mutations identified at recurrence. Deep sequencing of diagnostic and relapse paired samples confirmed that relapse-associated CEBPA mutations were absent at diagnosis, suggesting recurrence was triggered by novel, independent clones. Integrated WES and deep sequencing subsequently revealed an entirely new complement of mutations at relapse, verifying the presentation of a de novo leukemic episode. The cumulative incidence of relapse in familial AML was 56% at 10 years (n = 11), and 3 patients experienced ≥3 disease episodes over a period of 17 to 20 years. Durable responses to secondary therapies were observed, with prolonged median survival after relapse (8 years) and long-term overall survival (10-year overall survival, 67%). Our data reveal that familial CEBPA-mutated AML exhibits a unique model of disease progression, associated with favorable long-term outcomes.
Resumo:
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprinbeta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprinbeta. In chicken tenascin-C, meprinbeta processed all three major splicing variants by removal of 10kDa N-terminal and 38kDa C-terminal peptides, leaving a large central part of subunits intact. A similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15kDa) and two C-terminal fragments (40 and 55kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprinbeta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprinbeta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprinbeta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprinbeta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprinbeta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity.
Resumo:
Bombesin receptors are under intense investigation as molecular targets since they are overexpressed in several prevalent solid tumors. We rationally designed and synthesized a series of modified bombesin (BN) peptide analogs to study the influence of charge and spacers at the N-terminus, as well as amino acid substitutions, on both receptor binding affinity and pharmacokinetics. This enabled development of a novel (64/67)Cu-labeled BN peptide for PET imaging and targeted radiotherapy of BN receptor-positive tumors. Our results show that N-terminally positively charged peptide ligands had significantly higher affinity to human gastrin releasing peptide receptor (GRPr) than negatively charged or uncharged ligands (IC(50): 3.2±0.5 vs 26.3±3.5 vs 41.5±2.5 nM). The replacement of Nle(14) by Met, and deletion of D-Tyr(6), further resulted in 8-fold higher affinity. Contrary to significant changes to human GRPr binding, modifications at the N-terminal and at the 6(th), 11(th), and 14(th) position of BN induced only slight influences on affinity to mouse GRPr. [Cu(II)]-CPTA-[βAla(11)] BN(7-14) ([Cu(II)]-BZH7) showed the highest internalization rate into PC-3 cells with relatively slow efflux because of its subnanomolar affinity to GRPr. Interestingly, [(64/67)Cu]-BZH7 also displayed similar affinities to the other 2 human BN receptor subtypes. In vivo studies showed that [(64/67)Cu]-BZH7 had a high accumulation in PC-3 xenografts and allowed for clear-cut visualization of the tumor in PET imaging. In addition, a CPTA-glycine derivative, forming a hippurane-type spacer, enhanced kidney clearance of the radiotracer. These data indicate that the species variation of BN receptor plays an important role in screening radiolabeled BN. As well, the positive charge from the metallated complex at the N-terminal significantly increases affinity to human GRPr. Application of these observations enabled the novel ligand [(64/67)Cu]-BZH7 to clearly visualize PC-3 tumors in vivo. This study provides a strong starting point for optimizing radiopeptides for targeting carcinomas that express any of the BN receptor subtypes.
Resumo:
We derive multiscale statistics for deconvolution in order to detect qualitative features of the unknown density. An important example covered within this framework is to test for local monotonicity on all scales simultaneously. We investigate the moderately ill-posed setting, where the Fourier transform of the error density in the deconvolution model is of polynomial decay. For multiscale testing, we consider a calibration, motivated by the modulus of continuity of Brownian motion. We investigate the performance of our results from both the theoretical and simulation based point of view. A major consequence of our work is that the detection of qualitative features of a density in a deconvolution problem is a doable task, although the minimax rates for pointwise estimation are very slow.
Resumo:
Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework. Laminin, a four-armed glycoprotein, self-assembles through terminal-domain interactions to form a second polymer network, Entactin/nidogen, a dumbbell-shaped sulfated glycoprotein, binds laminin near its center and interacts with type IV collagen, bridging the two. A large heparan sulfate proteoglycan, important for charge-dependent molecular sieving, is firmly anchored in the basement membrane and can bind itself through a core-protein interaction to form dimers and oligomers and bind laminin and type IV collagen through its glycosaminoglycan chains. Heterogeneity of structure and function occur in different tissues, in development, and in response to different physiological needs. The molecular architecture of these matrices may be regulated during or after primary assembly through variations in compositions, isoform substitutions, and the modifying influence of exogenous macromolecules such as heparin and heparan sulfate.
Resumo:
Software-maintenance offshore outsourcing (SMOO) projects have been plagued by tedious knowledge transfer during the service transition to the vendor. Vendor engineers risk being over-strained by the high amounts of novel information, resulting in extra costs that may erode the business case behind offshoring. Although stakeholders may desire to avoid these extra costs by implementing appropriate knowledge transfer practices, little is known on how effective knowledge transfer can be designed and managed in light of the high cognitive loads in SMOO transitions. The dissertation at hand addresses this research gap by presenting and integrating four studies. The studies draw on cognitive load theory, attributional theory, and control theory and they apply qualitative, quantitative, and simulation methods to qualitative data from eight in-depth longitudinal cases. The results suggest that the choice of appropriate learning tasks may be more central to knowledge transfer than the amount of information shared with vendor engineers. Moreover, because vendor staff may not be able to and not dare to effectively self-manage learn-ing tasks during early transition, client-driven controls may be initially required and subsequently faded out. Collectively, the results call for people-based rather than codification-based knowledge management strategies in at least moderately specific and complex software environments.
Resumo:
The characterization of exoplanetary atmospheres has come of age in the last decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods and even wind speeds to be measured. Atmospheric dynamics sets the background state of density, temperature and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere. Hot exoplanets are most amenable to these characterization techniques; in the present review, we focus on highly-irradiated, large exoplanets (the "hot Jupiters"), as astronomical data begin to confront theoretical questions. We summarize the basic atmospheric quantities inferred from the astronomical observations. We review the state of the art by addressing a series of current questions and look towards the future by considering a separate set of exploratory questions. Attaining the next level of understanding will require a concerted effort of constructing multi-faceted, multi-wavelength datasets for benchmark objects. Understanding clouds presents a formidable obstacle, as they introduce degeneracies into the interpretation of spectra, yet their properties and existence are directly influenced by atmospheric dynamics. Confronting general circulation models with these multi-faceted, multi-wavelength datasets will help us understand these and other degeneracies. The coming decade will witness a decisive confrontation of theory and simulation by the next generation of astronomical data.
Resumo:
Introduction Since the quality of patient portrayal of standardized patients (SPs) during an Objective Structured Clinical Exam (OSCE) has a major impact on the reliability and validity of the exam, quality control should be initiated. Literature about quality control of SPs’ performance focuses on feedback [1, 2] or completion of checklists [3, 4]. Since we did not find a published instrument meeting our needs for the assessment of patient portrayal, we developed such an instrument after being inspired by others [5] and used it in our high-stakes exam. Project description SP trainers from five medical faculties collected and prioritized quality criteria for patient portrayal. Items were revised twice, based on experiences during OSCEs. The final instrument contains 14 criteria for acting (i.e. adequate verbal and non-verbal expression) and standardization (i.e. verbatim delivery of the first sentence). All partners used the instrument during a high-stakes OSCE. SPs and trainers were introduced to the instrument. The tool was used in training (more than 100 observations) and during the exam (more than 250 observations). Outcome High quality of SPs’ patient portrayal during the exam was documented. More than 90% of SP performances were rated to be completely correct or sufficient. An increase in quality of performance between training and exam was noted. For example, the rate of completely correct reaction in medical tests increased from 88% to 95%. Together with 4% of sufficient performances these 95% add up to 99% of the reactions in medical tests meeting the standards of the exam. SP educators using the instrument reported an augmentation of SPs’ performance induced by the use of the instrument. Disadvantages mentioned were the high concentration needed to observe all criteria and the cumbersome handling of the paper-based forms. Discussion We were able to document a very high quality of SP performance in our exam. The data also indicates that our training is effective. We believe that the high concentration needed using the instrument is well invested, considering the observed enhancement of performance. The development of an iPad-based application for the form is planned to address the cumbersome handling of the paper.
Resumo:
Introduction In our program, simulated patients (SPs) give feedback to medical students in the course of communication skills training. To ensure effective training, quality control of the SPs’ feedback should be implemented. At other institutions, medical students evaluate the SPs’ feedback for quality control (Bouter et al., 2012). Thinking about implementing quality control for SPs’ feedback in our program, we wondered whether the evaluation by students would result in the same scores as evaluation by experts. Methods Consultations simulated by 4th-year medical students with SPs were video taped including the SP’s feedback to the students (n=85). At the end of the training sessions students rated the SPs’ performance using a rating instrument called Bernese Assessment for Role-play and Feedback (BARF) containing 11 items concerning feedback quality. Additionally the videos were evaluated by 3 trained experts using the BARF. Results The experts showed a high interrater agreement when rating identical feedbacks (ICCunjust=0.953). Comparing the rating of students and experts, high agreement was found with regard to the following items: 1. The SP invited the student to reflect on the consultation first, Amin (= minimal agreement) 97% 2. The SP asked the student what he/she liked about the consultation, Amin = 88%. 3. The SP started with positive feedback, Amin = 91%. 4. The SP was comparing the student with other students, Amin = 92%. In contrast the following items showed differences between the rating of experts and students: 1. The SP used precise situations for feedback, Amax (=maximal agreement) 55%, Students rated 67 of SPs’ feedbacks to be perfect with regard to this item (highest rating on a 5 point Likert scale), while only 29 feedbacks were rated this way by the experts. 2. The SP gave precise suggestions for improvement, Amax 75%, 62 of SPs’ feedbacks obtained the highest rating from students, while only 44 of SPs’ feedbacks achieved the highest rating in the view of the experts. 3. The SP speaks about his/her role in the third person, Amax 60%. Students rated 77 feedbacks with the highest score, while experts judged only 43 feedbacks this way. Conclusion Although evaluation by the students was in agreement with that of experts concerning some items, students rated the SPs’ feedback more often with the optimal score than experts did. Moreover it seems difficult for students to notice when SPs talk about the role in the first instead of the third person. Since precision and talking about the role in the third person are important quality criteria of feedback, this result should be taken into account when thinking about students’ evaluation of SPs’ feedback for quality control. Bouter, S., E. van Weel-Baumgarten, and S. Bolhuis. 2012. Construction and Validation of the Nijmegen Evaluation of the Simulated Patient (NESP): Assessing Simulated Patients’ Ability to Role-Play and Provide Feedback to Students. Academic Medicine: Journal of the Association of American Medical Colleges