63 resultados para Computer network resources
Resumo:
Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.
Resumo:
For smart cities applications, a key requirement is to disseminate data collected from both scalar and multimedia wireless sensor networks to thousands of end-users. Furthermore, the information must be delivered to non-specialist users in a simple, intuitive and transparent manner. In this context, we present Sensor4Cities, a user-friendly tool that enables data dissemination to large audiences, by using using social networks, or/and web pages. The user can request and receive monitored information by using social networks, e.g., Twitter and Facebook, due to their popularity, user-friendly interfaces and easy dissemination. Additionally, the user can collect or share information from smart cities services, by using web pages, which also include a mobile version for smartphones. Finally, the tool could be configured to periodically monitor the environmental conditions, specific behaviors or abnormal events, and notify users in an asynchronous manner. Sensor4Cities improves the data delivery for individuals or groups of users of smart cities applications and encourages the development of new user-friendly services.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
In this paper, we show statistical analyses of several types of traffic sources in a 3G network, namely voice, video and data sources. For each traffic source type, measurements were collected in order to, on the one hand, gain better understanding of the statistical characteristics of the sources and, on the other hand, enable forecasting traffic behaviour in the network. The latter can be used to estimate service times and quality of service parameters. The probability density function, mean, variance, mean square deviation, skewness and kurtosis of the interarrival times are estimated by Wolfram Mathematica and Crystal Ball statistical tools. Based on evaluation of packet interarrival times, we show how the gamma distribution can be used in network simulations and in evaluation of available capacity in opportunistic systems. As a result, from our analyses, shape and scale parameters of gamma distribution are generated. Data can be applied also in dynamic network configuration in order to avoid potential network congestions or overflows. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission. MCN project was launched in November 2012 for the period of 36 month. In total top-tier 19 partners from industry and academia commit to jointly establish the vision of Mobile Cloud Networking, to develop a fully cloud-based mobile communication and application platform.
Resumo:
Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.
Resumo:
As Social Network Sites (SNS) permeate our daily routines, the question whether participation results in value for SNS users becomes particularly acute. This study adopts a 'participation-source-outcome' perspective to explore how distinct uses of SNS generate various types of social capital benefits. Building on existing research, extensive qualitative findings and an empirical study with 253 Facebook users, we uncover the process of social capital formation on SNS. We find that even though active communication is an important prerequisite, it is the diversified network structure and the increased social connectedness that are responsible for the attainment of the four benefits of social capital on SNS: emotional support, networking value, horizon broadening and offline participation. Moreover, we propose and validate scales to measure social capital benefits in the novel context of SNS.
Resumo:
By enabling connections between individuals, Social Networking Sites, such as Facebook, promise to create significant individual as well as social value. Encouraging connections between users is also crucial for service providers who increasingly rely on social advertising and viral marketing campaigns as important sources of their revenue. Consequently, understanding user’s network construction behavior becomes critical. However, previous studies offer only few scattered insights into this research question. In order to fill this gap, we employ Grounded Theory methodology to derive a comprehensive model of network construction behavior on social networking sites. In the following step we assess two Structural Equation Models to gain refined insights into the motivation to send and accept friendship requests – two network expansion strategies. Based on our findings, we offer recommendations for social network providers.
Resumo:
Despite their enormous success the motivation behind user participation in Online Social Networks is still little understood. This study explores a variety of possible incentives and provides an empirical evaluation of their subjective relevance. The analysis is based on survey data from 129 test subjects. Using Structural Equation Modeling, we identified that the satisfaction of the needs for belongingness and the esteem needs through self-presentation together with peer pressure are the main drivers of participation. The analysis of a sub-sample of active users pointed out the satisfaction of the cognitive needs as an additional participation determinant. Based on these findings, recommendations for online social network providers are made.
Resumo:
During the last decade, medical education in the German-speaking world has been striving to become more practice-oriented. This is currently being achieved in many schools through the implementation of simulation-based instruction in Skills Labs. Simulators are thus an essential part of this type of medical training, and their acquisition and operation by a Skills Lab require a large outlay of resources. Therefore, the Practical Skills Committee of the Medical Education Society (GMA) introduced a new project, which aims to improve the flow of information between the Skills Labs and enable a transparent assessment of the simulators via an online database (the Simulator Network).
Resumo:
RESTful services gained a lot of attention recently, even in the enterprise world, which is traditionally more web-service centric. Data centric RESfFul services, as previously mainly known in web environments, established themselves as a second paradigm complementing functional WSDL-based SOA. In the Internet of Things, and in particular when talking about sensor motes, the Constraint Application Protocol (CoAP) is currently in the focus of both research and industry. In the enterprise world a protocol called OData (Open Data Protocol) is becoming the future RESTful data access standard. To integrate sensor motes seamlessly into enterprise networks, an embedded OData implementation on top of CoAP is desirable, not requiring an intermediary gateway device. In this paper we introduce and evaluate an embedded OData implementation. We evaluate the OData protocol in terms of performance and energy consumption, considering different data encodings, and compare it to a pure CoAP implementation. We were able to demonstrate that the additional resources needed for an OData/JSON implementation are reasonable when aiming for enterprise interoperability, where OData is suggested to solve both the semantic and technical interoperability problems we have today when connecting systems
Resumo:
Seventy percent of the population in Myanmar lives in rural areas. Although health workers are adequately trained, they are overburdened due to understaffing and insufficient supplies. Literature confirms that information and communication technologies can extend the reach of healthcare. In this paper, we present an SMS-based social network that aims to help health workers to interact with other medical professionals through topic-based message delivery. Topics describe interests of users and the content of message. A message is delivered by matching message content with user interests. Users describe topics as ICD- 10 codes, a comprehensive medical taxonomy. In this ICD-10 coded SMS, a set of prearranged codes provides a common language for users to send structured information that fits inside an SMS.
Resumo:
Abstract Cloud computing service emerged as an essential component of the Enterprise {IT} infrastructure. Migration towards a full range and large-scale convergence of Cloud and network services has become the current trend for addressing requirements of the Cloud environment. Our approach takes the infrastructure as a service paradigm to build converged virtual infrastructures, which allow offering tailored performance and enable multi-tenancy over a common physical infrastructure. Thanks to virtualization, new exploitation activities of the physical infrastructures may arise for both transport network and Data Centres services. This approach makes network and Data Centres’ resources dedicated to Cloud Computing to converge on the same flexible and scalable level. The work presented here is based on the automation of the virtual infrastructure provisioning service. On top of the virtual infrastructures, a coordinated operation and control of the different resources is performed with the objective of automatically tailoring connectivity services to the Cloud service dynamics. Furthermore, in order to support elasticity of the Cloud services through the optical network, dynamic re-planning features have been provided to the virtual infrastructure service, which allows scaling up or down existing virtual infrastructures to optimize resource utilisation and dynamically adapt to users’ demands. Thus, the dynamic re-planning of the service becomes key component for the coordination of Cloud and optical network resource in an optimal way in terms of resource utilisation. The presented work is complemented with a use case of the virtual infrastructure service being adopted in a distributed Enterprise Information System, that scales up and down as a function of the application requests.
Resumo:
Intra-session network coding has been shown to offer significant gains in terms of achievable throughput and delay in settings where one source multicasts data to several clients. In this paper, we consider a more general scenario where multiple sources transmit data to sets of clients over a wireline overlay network. We propose a novel framework for efficient rate allocation in networks where intermediate network nodes have the opportunity to combine packets from different sources using randomized network coding. We formulate the problem as the minimization of the average decoding delay in the client population and solve it with a gradient-based stochastic algorithm. Our optimized inter-session network coding solution is evaluated in different network topologies and is compared with basic intra-session network coding solutions. Our results show the benefits of proper coding decisions and effective rate allocation for lowering the decoding delay when the network is used by concurrent multicast sessions.