34 resultados para Collaborative learning flow pattern


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frontal alpha band asymmetry (FAA) is a marker of altered reward processing in major depressive disorder (MDD), associated with reduced approach behavior and withdrawal. However, its association with brain metabolism remains unclear. The aim of this study is to investigate FAA and its correlation with resting – state cerebral blood flow (rCBF). We hypothesized an association of FAA with regional rCBF in brain regions relevant for reward processing and motivated behavior, such as the striatum. We enrolled 20 patients and 19 healthy subjects. FAA scores and rCBF were quantified with the use of EEG and arterial spin labeling. Correlations of the two were evaluated, as well as the association with FAA and psychometric assessments of motivated behavior and anhedonia. Patients showed a left – lateralized pattern of frontal alpha activity and a correlation of FAA lateralization with subscores of Hamilton Depression Rating Scale linked to motivated behavior. An association of rCBF and FAA scores was found in clusters in the dorsolateral prefrontal cortex bilaterally (patients) and in the left medial frontal gyrus, in the right caudate head and in the right inferior parietal lobule (whole group). No correlations were found in healthy controls. Higher inhibitory right – lateralized alpha power was associated with lower rCBF values in prefrontal and striatal regions, predominantly in the right hemisphere, which are involved in the processing of motivated behavior and reward. Inhibitory brain activity in the reward system may contribute to some of the motivational problems observed in MDD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2×2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance (~85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian clustering methods are typically used to identify barriers to gene flow, but they are prone to deduce artificial subdivisions in a study population characterized by an isolation-by-distance pattern (IbD). Here we analysed the landscape genetic structure of a population of wild boars (Sus scrofa) from south-western Germany. Two clustering methods inferred the presence of the same genetic discontinuity. However, the population in question was characterized by a strong IbD pattern. While landscape-resistance modelling failed to identify landscape features that influenced wild boar movement, partial Mantel tests and multiple regression of distance matrices (MRDMs) suggested that the empirically inferred clusters were separated by a genuine barrier. When simulating random lines bisecting the study area, 60% of the unique barriers represented, according to partial Mantel tests and MRDMs, significant obstacles to gene flow. By contrast, the random-lines simulation showed that the boundaries of the inferred empirical clusters corresponded to the most important genetic discontinuity in the study area. Given the degree of habitat fragmentation separating the two empirical partitions, it is likely that the clustering programs correctly identified a barrier to gene flow. The differing results between the work published here and other studies suggest that it will be very difficult to draw general conclusions about habitat permeability in wild boar from individual studies.