34 resultados para Centralize density-based spatial clustering of applications with noise
Resumo:
1. Recent theoretical studies suggest that the stability of ecosystem processes is not governed by diversity per se, but by multitrophic interactions in complex communities. However, experimental evidence supporting this assumption is scarce.2. We investigated the impact of plant diversity and the presence of above- and below-ground invertebrates on the stability of plant community productivity in space and time, as well as the interrelationship between both stability measures in experimental grassland communities.3. We sampled above-ground plant biomass on subplots with manipulated above- and below-ground invertebrate densities of a grassland biodiversity experiment (Jena Experiment) 1, 4 and 6 years after the establishment of the treatments to investigate temporal stability. Moreover, we harvested spatial replicates at the last sampling date to explore spatial stability.4. The coefficient of variation of spatial and temporal replicates served as a proxy for ecosystem stability. Both spatial and temporal stability increased to a similar extent with plant diversity. Moreover, there was a positive correlation between spatial and temporal stability, and elevated plant density might be a crucial factor governing the stability of diverse plant communities.5. Above-ground insects generally increased temporal stability, whereas impacts of both earthworms and above-ground insects depended on plant species richness and the presence of grasses. These results suggest that inconsistent results of previous studies on the diversity–stability relationship have in part been due to neglecting higher trophic-level interactions governing ecosystem stability.6. Changes in plant species diversity in one trophic level are thus unlikely to mirror changes in multitrophic interrelationships. Our results suggest that both above- and below-ground invertebrates decouple the relationship between spatial and temporal stability of plant community productivity by differently affecting the homogenizing mechanisms of plants in diverse plant communities.7.Synthesis. Species extinctions and accompanying changes in multitrophic interactions are likely to result not only in alterations in the magnitude of ecosystem functions but also in its variability complicating the assessment and prediction of consequences of current biodiversity loss.
Resumo:
Background: It is yet unclear if there are differences between using electronic key feature problems (KFPs) or electronic case-based multiple choice questions (cbMCQ) for the assessment of clinical decision making. Summary of Work: Fifth year medical students were exposed to clerkships which ended with a summative exam. Assessment of knowledge per exam was done by 6-9 KFPs, 9-20 cbMCQ and 9-28 MC questions. Each KFP consisted of a case vignette and three key features (KF) using “long menu” as question format. We sought students’ perceptions of the KFPs and cbMCQs in focus groups (n of students=39). Furthermore statistical data of 11 exams (n of students=377) concerning the KFPs and (cb)MCQs were compared. Summary of Results: The analysis of the focus groups resulted in four themes reflecting students’ perceptions of KFPs and their comparison with (cb)MCQ: KFPs were perceived as (i) more realistic, (ii) more difficult, (iii) more motivating for the intense study of clinical reasoning than (cb)MCQ and (iv) showed an overall good acceptance when some preconditions are taken into account. The statistical analysis revealed that there was no difference in difficulty; however KFP showed a higher discrimination and reliability (G-coefficient) even when corrected for testing times. Correlation of the different exam parts was intermediate. Conclusions: Students perceived the KFPs as more motivating for the study of clinical reasoning. Statistically KFPs showed a higher discrimination and higher reliability than cbMCQs. Take-home messages: Including KFPs with long menu questions into summative clerkship exams seems to offer positive educational effects.
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.