70 resultados para Cell culture


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major endocannabinoids (ECs) arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) and related N-ethanolamines act as full and partial agonists at CB(1), CB(2), GPR55, PPAR and TRPV1 receptors to various degrees. These receptors are also expressed in immune cells like monocytes/macrophages where they regulate different cellular processes. In this study, potentially bioactive lipids in fetal bovine sera (FBS) were quantified by GC/MS. We found that several commercial FBS contain ECs and bioactive amounts of 2-AG (250-700 nM). We show that residual 2-AG from FBS can activate primary macrophages and increase migration and RANKL-stimulated osteoclastogenesis. Furthermore, 2-AG high-content sera specifically upregulated LPS-stimulated IL-6 expression in U937 cells. Polymyxin B beads may be used to selectively and efficiently remove 2-AG from sera, but not arachidonic acid and N-ethanolamines. In conclusion, 2-AG in cell culture media may significantly influence cellular experiments. CD14+ mononuclear cells which strongly express surface CB receptors may be particularly sensitive towards residual 2-AG from FBS. Therefore, the EC content in culture media should be controlled in biological experiments involving monocytes/macrophages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clostridium perfringens type C causes fatal necrotizing enteritis in different mammalian hosts, most commonly in newborn piglets. Human cases are rare, but the disease, also called pigbel, was endemic in the Highlands of Papua New Guinea. Lesions in piglets and humans are very similar and characterized by segmental necro-hemorrhagic enteritis in acute cases and fibrino-necrotizing enteritis in subacute cases. Histologically, deep mucosal necrosis accompanied by vascular thrombosis and necrosis was consistently reported in naturally affected pigs and humans. This suggests common pathogenetic mechanisms. Previous in vitro studies using primary porcine aortic endothelial cells suggested that beta-toxin (CPB) induced endothelial damage contributes to the pathogenesis of C. perfringens type C enteritis in pigs. In the present study we investigated toxic effects of CPB on cultured primary human macro- and microvascular endothelial cells. In vitro, these cells were highly sensitive to CPB and reacted with similar cytopathic and cytotoxic effects as porcine endothelial cells. Our results indicate that porcine and human cell culture based in vitro models represent valuable tools to investigate the pathogenesis of this bacterial disease in animals and humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 10-year-old male, neutered domestic shorthair cat was presented with fever, anorexia, vomiting, and diarrhea. Serologic testing for Feline immunodeficiency virus and Feline leukemia virus were negative. Fine-needle aspirates of mesenteric lymph nodes revealed the presence of banana-shaped apicomplexan parasites. The cat died after 4 days of hospitalization. Postmortem polymerase chain reaction (PCR) analysis confirmed the presence of Toxoplasma gondii in all examined organs. Parasites were ex vivo isolated in outbred mice and subsequently transferred into cell culture. Genotyping, using genetic markers for SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico for PCR-restriction fragment length polymorphism, revealed infection with type II T. gondii displaying type II alleles at all loci except Apico, which exhibited a type I allele. This is the most frequently identified genotype among cats acting as definitive hosts in central Europe, but to the authors' knowledge, it has never been associated with systemic toxoplasmosis in an adult, immunocompetent cat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bovine herpesvirus 1 (BoHV-1) and BoHV-5 are closely related pathogens of cattle, but only BoHV-5 is considered a neuropathogen. We engineered intertypic gD exchange mutants with BoHV-1 and BoHV-5 backbones in order to address their in vitro and in vivo host ranges, with particular interest in invasion of the brain. The new viruses replicated in cell culture with similar dynamics and to titers comparable to those of their wild-type parents. However, gD of BoHV-5 (gD5) was able to interact with a surprisingly broad range of nectins. In vivo, gD5 provided a virulent phenotype to BoHV-1 in AR129 mice, featuring a high incidence of neurological symptoms and early onset of disease. However, only virus with the BoHV-5 backbone, independent of the gD type, was detected in the brain by immunohistology. Thus, gD of BoHV-5 confers an extended cellular host range to BoHV-1 and may be considered a virulence factor but does not contribute to the invasion of the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies using cultured cells allow one to dissect complex cellular mechanisms in greater detail than when studying living organisms alone. However, before cultured cells can deliver meaningful results they must accurately represent the in vivo situation. Over the last three to four decades considerable effort has been devoted to the development of culture media which improve in vitro growth and modeling accuracy. In contrast to earlier large-scale, non-specific screening of factors, in recent years the development of such media has relied increasingly on a deeper understanding of the cell's biology and the selection of growth factors to specifically activate known biological processes. These new media now enable equal or better cell isolation and growth, using significantly simpler and less labor-intensive methodologies. Here we describe a simple method to isolate and cultivate epidermal keratinocytes from embryonic or neonatal skin on uncoated plastic using a medium specifically designed to retain epidermal keratinocyte progenitors in an undifferentiated state for improved isolation and proliferation and an alternative medium to support terminal differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Twenty-seven sheep of the four most common Swiss breeds and the English breed Poll Dorset were experimentally infected with a northern European field strain of bluetongue virus serotype 8 (BTV-8). Animals of all breeds developed clinical signs, viremia and pathological lesions, demonstrating that BTV-8 is fully capable of replicating and inducing bluetongue disease (BT) in the investigated sheep. Necropsy performed between 10 and 16 days post-infectionem (d.p.i.) revealed BT-typical hemorrhages, effusions, edema, erosions and activation of lymphatic tissues. Hemorrhages on the base of the Arteria pulmonalis and the left Musculus papillaris subauricularis were frequently present. Histology confirmed the macroscopical findings. Using a score system, clinical manifestation and pathology were found to be significantly related. Furthermore, clinical signs and fever were shown to be indicative for the concurrent presence of high amounts of viral ribonucleic acid (RNA) in blood. Spleen, lung, lymph nodes and tonsils from all animals were analyzed regarding viral RNA loads and infectivity using real-time reverse transcriptase PCR (rRT-PCR) and virus isolation in cell culture, respectively. The highest amount of viral RNA was detected in spleen and lung and rRT-PCR revealed to be a more sensitive method for virus detection compared to virus isolation. A long-term follow-up was performed with three sheep showing that BTV-8 viral RNA in blood was present up to 133 d.p.i. and in certain tissues even on 151 d.p.i. No significant breed-related differences were observed concerning clinicopathological picture and viremia, and the Swiss sheep were as susceptible to BTV-8 infection as Poll Dorset sheep, demonstrating a remarkably high virulence of BTV-8 for indigenous sheep breeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tick-borne encephalitis virus is the causative agent of tick-borne encephalitis, a potentially fatal neurological infection. Tick-borne encephalitis virus belongs to the family of flaviviruses and is transmitted by infected ticks. Despite the availability of vaccines, approximately 2000-3000 cases of tick-borne encephalitis occur annually in Europe for which no curative therapy is available. The antiviral effects of RNA mediated interference by small interfering RNA (siRNA) was evaluated in cell culture and organotypic hippocampal cultures. Langat virus, a flavivirus highly related to Tick-borne encephalitis virus exhibits low pathogenicity for humans but retains neurovirulence for rodents. Langat virus was used for the establishment of an in vitro model of tick-borne encephalitis. We analyzed the efficacy of 19 siRNA sequences targeting different regions of the Langat genome to inhibit virus replication in the two in vitro systems. The most efficient suppression of virus replication was achieved by siRNA sequences targeting structural genes and the 3' untranslated region. When siRNA was administered to HeLa cells before the infection with Langat virus, a 96.5% reduction of viral RNA and more than 98% reduction of infectious virus particles was observed on day 6 post infection, while treatment after infection decreased the viral replication by more than 98%. In organotypic hippocampal cultures the replication of Langat virus was reduced by 99.7% by siRNA sequence D3. Organotypic hippocampal cultures represent a suitable in vitro model to investigate neuronal infection mechanisms and treatment strategies in a preserved three-dimensional tissue architecture. Our results demonstrate that siRNA is an efficient approach to limit Langat virus replication in vitro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH-cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b(5), squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b(5) are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b(5) on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell-culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medical literature regularly reports on accidental poisoning in children after aspiration of combustibles such as lamp oils which usually contain hydrocarbons or rape methyl esters (RMEs). We aimed to analyze the toxic potential of alkanes and different combustible classes in vitro with regard to biologic responses and mechanisms mediating toxicity. Two different in vitro models were used, i.e. (i) a captive bubble surfactometer (CBS) to assess direct influence of combustibles on biophysical properties of surfactant film and (ii) cell cultures (BEAS-2B and R3/1 cells, primary macrophages, re-differentiated epithelia) closely mimicking the inner lung surface. Biological endpoints included cell viability, cytotoxicity and inflammatory mediator release. CBS measurements demonstrate that combustibles affect film dynamics, i.e. the surface tension/area characteristics during compression and expansion, in a dose and molecular chain length dependent manner. Cell culture results confirm the dose dependent toxicity. Generally, cytotoxicity and cytokine release are higher in short-chained alkanes and hydrocarbon-based combustibles than in long-chained substances, e.g. highest inducible cytotoxicity in BEAS-2B was for hexane 84.6%, decane 74% and hexadecane 30.8%. Effects of RME-based combustibles differed between the cell models. Our results confirm data from animal experiments and give new insights into the mechanisms underlying the adverse health effects observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NSC686288 [aminoflavone (AF)], a candidate chemotherapeutic agent, possesses a unique antiproliferative profile against tumor cells. Metabolic bioactivation of AF by drug-metabolizing enzymes, especially CYP1A monooxygenases, has been implicated as an underlying mechanism for its selective cytotoxicity in several cell culture-based studies. However, in vivo metabolism of AF has not been investigated in detail. In this study, the structural identities of 13 AF metabolites (12 of which are novel) in mouse urine or from microsomal incubations, including three monohydroxy-AFs, two dihydroxy-AFs and their sulfate and glucuronide conjugates, as well as one N-glucuronide, were determined by accurate mass measurements and liquid chromatography-tandem mass spectrometry fragmentation patterns, and a comprehensive map of the AF metabolic pathways was constructed. Significant differences between wild-type and Cyp1a2-null mice, within the relative composition of urinary metabolites of AF, demonstrated that CYP1A2-mediated regioselective oxidation was a major contributor to the metabolism of AF. Comparisons between wild-type and CYP1A2-humanized mice further revealed interspecies differences in CYP1A2-mediated catalytic activity. Incubation of AF with liver microsomes from all three mouse lines and with pooled human liver microsomes confirmed the observations from urinary metabolite profiling. Results from enzyme kinetic analysis further indicated that in addition to CYP1A P450s, CYP2C P450s may also play some role in the metabolism of AF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neospora caninum is an apicomplexan parasite that is closely related to Toxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast to T. gondii, N. caninum represents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused by N. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, by analogy with T. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unraveling intra- and inter-cellular signaling networks managing cell-fate control, coordinating complex differentiation regulatory circuits and shaping tissues and organs in living systems remain major challenges in the post-genomic era. Resting on the laurels of past-century monolayer culture technologies, the cell culture community has only recently begun to appreciate the potential of three-dimensional mammalian cell culture systems to reveal the full scope of mechanisms orchestrating the tissue-like cell quorum in space and time. Capitalizing on gravity-enforced self-assembly of monodispersed primary embryonic mouse cells in hanging drops, we designed and characterized a three-dimensional cell culture model for ganglion-like structures. Within 24h, a mixture of mouse embryonic fibroblasts (MEF) and cells, derived from the dorsal root ganglion (DRG) (sensory neurons and Schwann cells) grown in hanging drops, assembled to coherent spherical microtissues characterized by a MEF feeder core and a peripheral layer of DRG-derived cells. In a time-dependent manner, sensory neurons formed a polar ganglion-like cap structure, which coordinated guided axonal outgrowth and innervation of the distal pole of the MEF feeder spheroid. Schwann cells, present in embryonic DRG isolates, tended to align along axonal structures and myelinate them in an in vivo-like manner. Whenever cultivation exceeded 10 days, DRG:MEF-based microtissues disintegrated due to an as yet unknown mechanism. Using a transgenic MEF feeder spheroid, engineered for gaseous acetaldehyde-inducible interferon-beta (ifn-beta) production by cotransduction of retro-/ lenti-viral particles, a short 6-h ifn-beta induction was sufficient to rescue the integrity of DRG:MEF spheroids and enable long-term cultivation of these microtissues. In hanging drops, such microtissues fused to higher-order macrotissue-like structures, which may pave the way for sophisticated bottom-up tissue engineering strategies. DRG:MEF-based artificial micro- and macrotissue design demonstrated accurate key morphological aspects of ganglions and exemplified the potential of self-assembled scaffold-free multicellular micro-/macrotissues to provide new insight into organogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heparin may cause adverse effects on bone formation following long-term application. The exact pathomechanism is unclear, but in vitro data suggest an impaired osteoblast function. The transcription axis of Cbfa-1 (Runx-2) and osteocalcin is crucial in maintaining an equilibrium of bone formation and resorption in vivo. We used a human osteoblast cell culture model to further investigate the effect of heparin (low-molecular-weight heparin, dalteparin) on the expression of these two regulators of osteoblast differentiation. At high doses, dalteparin caused a significant inhibition of both osteocalcin and Cbfa-1 expression in vitro. Our data support the hypothesis of a direct inhibition of osteoblast function underlying heparin osteoporosis.