38 resultados para Carbon Emissions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr−1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9–3.5%) in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr−1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr−1 or 3.6 ± 0.2 PgC yr−1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr−1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr−1. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ± 1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr − 1, ELUC 0.9 ± 0.5 GtC yr − 1, GATM 4.3 ± 0.1 GtC yr − 1, S OCEAN 2.5 ± 0.5 GtC yr − 1, and S LAND 2.8 ± 0.8 GtC yr − 1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr − 1, 2.2 % above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr − 1, SOCEANwas 2.9 ± 0.5 GtC yr −1, and assuming an ELU Cof 1.0 ± 0.5 GtC yr − 1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr − 1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 con- centration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1 % (1.1–3.1 %) to 9.9 ± 0.5 GtC in 2013, 61 % above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70 % from EFF (390 ± 20 GtC) and 30 % from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiocarbon (14C) measurements of both organic carbon (OC) and elemental carbon (EC) allow a more detailed source apportionment, leading to a full and unambiguous distinction and quantification of the contributions from non-fossil and fossil sources. A thermal-optical method with a commercial OC/EC analyzer to isolate water-insoluble OC (WIOC) and EC for their subsequent 14C measurement was applied for the first time to filtered precipitation samples collected at a costal site in Portugal and at a continental site in Switzerland. Our results show that WIOC in precipitation is dominated by non-fossil sources such as biogenic and biomass-burning emissions regardless of rain origins and seasons, whereas EC sources are shared by fossil-fuel combustion and biomass burning. In addition, monthly variation of WIOC in Switzerland was characterized by higher abundance in warm than in cold seasons, highlighting the importance of biogenic emissions to particulate carbon in rainwater. Samples with high particulate carbon concentrations in Portugal were found to be associated with increased biogenic input. Despite the importance of non-fossil sources, fossil emissions account for approximately 20% of particulate carbon in wet deposition for our study, which is in line with fossil contribution in bulk rainwater dissolved organic carbon as well as aerosol WIOC and EC estimated by the 14C approach from other studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon (14C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The 14C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining 14C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methane (CH4) and carbon dioxide emissions from lakes are relevant for assessing the greenhouse gas output of wetlands. However, only few standardized datasets describe concentrations of these gases in lakes across different geographical regions. We studied concentrations and stable carbon isotopic composition (δ13C) of CH4 and dissolved inorganic carbon (DIC) in 32 small lakes from Finland, Sweden, Germany, the Netherlands, and Switzerland in late summer. Higher concentrations and δ13C values of DIC were observed in calcareous lakes than in lakes on non-calcareous areas. In stratified lakes, δ13C values of DIC were generally lower in the hypolimnion due to the degradation of organic matter (OM). Unexpectedly, increased δ13C values of DIC were registered above the sediment in several lakes. This may reflect carbonate dissolution in calcareous lakes or methanogenesis in deepwater layers or in the sediments. Surface water CH4 concentrations were generally higher in western and central European lakes than in Fennoscandian lakes, possibly due to higher CH4 production in the littoral sediments and lateral transport, whereas CH4 concentrations in the hypolimnion did not differ significantly between the regions. The δ13C values of CH4 in the sediment suggest that δ13C values of biogenic CH4 are not necessarily linked to δ13C values of sedimentary OM but may be strongly influenced by OM quality and methanogenic pathway. Our study suggests that CH4 and DIC cycling in small lakes differ between geographical regions and that this should be taken into account when regional studies on greenhouse gas emissions are upscaled to inter-regional scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the results from the NCAR CSM1.4-coupled global carbon cycle– climate model under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios SRES A2 and B1, we estimated the effects of both global warming and ocean acidification on the future habitats of corals in the seas around Japan during this century. As shown by Yara et al. (Biogeosciences 9:4955–4968,2012), under the high-CO₂-emission scenario (SRES A2), coral habitats will be sandwiched and narrowed between the northern region, where the saturation state of the carbonate mineral aragonite (Ωarag) decreases, and the southern region, where coral bleaching occurs. We found that under the low-emission scenario SRES B1, the coral habitats will also shrink in the northern region by the reduced Ωarag but to a lesser extent than under SRES A2, and in contrast to SRES A2, no bleaching will occur in the southern region. Therefore, coral habitats in the southern region are expected to be largely unaffected by ocean acidification or surface warming under the low-emission scenario. Our results show that potential future coral habitats depend strongly on CO₂ emissions and emphasize the importance of reducing CO₂ emissions to prevent negative impacts on coral habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1−1.3 μg m−3). The remaining 24 ± 11% (0.03−0.42 μg m−3) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5−2.8 μg m−3), approximately half of which was apportioned to primary biomass burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With its wide coverage of economic spheres and the variety of trade and investment measures currently under negotiation, the Transatlantic Trade and Investment Partnership (TTIP) opens windows of opportunity for climate change mitigation and adaptation. The paper examines the possible avenues and the WTO law implications for the alignment of emissions standards between the European Union (EU) and United States of America (US). Looking particularly at the automobile sector, it argues that TTIP negotiators should strive for the mutual recognition of equivalence of EU and US car emissions standards, while pursuing full harmonisation in the long term. It concludes that the preferential trade agreement (PTA) status of TTIP would not be able to exempt measures taken for regulatory convergence from compliance with applicable WTO rules, particularly the rules of the WTO’s Agreement on Technical Barriers to Trade (TBT). Furthermore, the EU and the US would not be able to ignore requests for the recognition of equivalence of third countries’ standards and would need to provide the grounds upon which they assess third countries’ standards as not adequately fulfilling the objectives of their own regulations and therefore rejecting them.