62 resultados para Capillary tubes
Resumo:
The use of capillary zone electrophoresis (CZE) with indirect absorbance detection for the analysis of ethyl sulfate (EtS) in serum and urine was investigated. EtS is a direct metabolite of ethanol employed as marker for recent alcohol consumption. Fused-silica capillaries of 60 cm total length were either coated with cetyltrimethylammonium bromide (CTAB, 50 microm I.D. capillary) or poly(diallyldimethylammonium chloride) (PDADMAC, 100 microm I.D. capillary) to allow CZE analyses to be performed with reversed polarity. At pH 2.2 with a maleic acid/phthalic acid background electrolyte, both approaches provided reliable EtS serum levels down to 0.2 mg L(-1) (1.6 microM) for the analysis of solid-phase extracts that were prepared after chloride precipitation. Analysis of urines diluted to a conductivity of 5 S m(-1) and analyzed in the two capillary formats resulted in limits of quantification (LOQs) of 2 and 1 mg L(-1), respectively. With urines adjusted to 10 S m(-1) via dilution or condensation, an LOQ of 0.6 mg L(-1) (4.8 microM) was obtained in the CTAB coated capillary whereas in the PDADMAC-coated capillary of equal length not all matrix components were resolved from EtS. The developed assays are robust and suitable to monitor EtS in samples of individuals who consumed as little as one standard drink of an alcoholic beverage containing about 14 g of ethanol.
Resumo:
Capillary zone electrophoresis (CZE) in fused-silica capillaries is an effective analytical approach for the separation and determination of the transferrin (Tf) isoforms and thus carbohydrate-deficient transferrin (CDT) in human serum. Sera of patients with progressed liver cirrhosis are prone to interferences in the beta region which prevent the proper determination of CDT by CZE without additional sample preparation. Efforts to identify, reduce or even eliminate these interferences have been undertaken. Data obtained by ultrafiltration, affinity subtraction procedures using protein A, protein L and antibodies against immunoglobulins or Tf, and immunopurification of Tf suggest that the interferences in the patient sera are caused by increased levels of IgA and IgM and are best eliminated by immunopurification. Avian IgY antibody spin column immunocapture of serum Tf followed by CZE analysis of the stripped and concentrated fraction is shown to provide an attractive approach for CDT monitoring in sera with beta region interferences.
Resumo:
An assay for the simultaneous determination of the enantiomers of hydroxymebendazole (OH-MBZ) and hydroxyaminomebendazole (OH-AMBZ) together with aminomebendazole (AMBZ) in human plasma is described for the first time. It is based upon liquid-liquid extraction at alkaline pH from 0.5 mL plasma followed by analysis of the reconstituted extract by CE with reversed polarity in the presence of a 50 mM, pH 4.2 acetate buffer containing 15 mg/mL sulfated beta-CD as chiral selector. For all compounds, detection limits are between 0.01 and 0.04 microg/mL, and intraday and interday precisions evaluated from peak area ratios are <6.9 and <8.5%, respectively. Analysis of 39 samples of echinoccocosis patients undergoing pharmacotherapy with mebendazole (MBZ) revealed that the ketoreduction of MBZ and AMBZ is highly stereoselective. One enantiomer of each metabolite (firstly detected peak in both cases) could only be detected. The CE data revealed that OH-MBZ (mean: 0.715 microg/mL) is the major metabolite followed by AMBZ (mean: 0.165 microg/mL) and OH-AMBZ (mean: 0.055 microg/mL) whereas the MBZ plasma levels (mean: 0.096 microg/mL, levels determined by HPLC) were between those of AMBZ and OH-AMBZ.
Resumo:
Data obtained with two CZE assays for determining carbohydrate-deficient transferrin (CDT) in human serum under routine conditions, the CAPILLARYS CDT and the high-resolution CEofix (HR-CEofix) CDT methods, are in agreement with patient sera that do not exhibit interferences, high trisialo-transferrin (Tf) levels or genetic variants. HR-CEofix CDT levels are somewhat higher compared to those obtained with the CAPILLARYS method and this bias corresponds to the difference of the upper reference values of the two assays. The lower resolution between disialo-Tf and trisialo-Tf observed in the CAPILLARYS system (mean: 1.24) compared to HR-CEofix (mean: 1.74) is believed to be the key for this difference. For critical sera with high trisialo-Tf levels, genetic variants, or certain interferences in the beta-region, the HR-CEofix approach is demonstrated to perform better than CAPILLARYS. However, the determination of CDT with the HR-CEofix method can also be hampered with interferences. Results with disialo-Tf values larger than 3% in the absence of asialo-Tf should be evaluated with immunosubtraction of Tf and possibly also confirmed with another CZE method or by HPLC. Furthermore, data gathered with the N Latex CDT direct immunonephelometric assay suggest that this assay can be used for screening purposes. To reduce the number of false negative results, CDT data above 2.0% should be confirmed using a separation method.
Resumo:
BACKGROUND: Surfactant protein type B (SPB) is needed for alveolar gas exchange. SPB is increased in the plasma of patients with heart failure (HF), with a concentration that is higher when HF severity is highest. The aim of this study was to evaluate the relationship between plasma SPB and both alveolar-capillary diffusion at rest and ventilation versus carbon dioxide production during exercise. METHODS AND RESULTS: Eighty patients with chronic HF and 20 healthy controls were evaluated consecutively, but the required quality for procedures was only reached by 71 patients with HF and 19 healthy controls. Each subject underwent pulmonary function measurements, including lung diffusion for carbon monoxide and membrane diffusion capacity, and maximal cardiopulmonary exercise test. Plasma SPB was measured by immunoblotting. In patients with HF, SPB values were higher (4.5 [11.1] versus 1.6 [2.9], P=0.0006, median and 25th to 75th interquartile), whereas lung diffusion for carbon monoxide (19.7+/-4.5 versus 24.6+/-6.8 mL/mm Hg per min, P<0.0001, mean+/-SD) and membrane diffusion capacity (28.9+/-7.4 versus 38.7+/-14.8, P<0.0001) were lower. Peak oxygen consumption and ventilation/carbon dioxide production slope were 16.2+/-4.3 versus 26.8+/-6.2 mL/kg per min (P<0.0001) and 29.7+/-5.9 and 24.5+/-3.2 (P<0.0001) in HF and controls, respectively. In the HF population, univariate analysis showed a significant relationship between plasma SPB and lung diffusion for carbon monoxide, membrane diffusion capacity, peak oxygen consumption, and ventilation/carbon dioxide production slope (P<0.0001 for all). On multivariable logistic regression analysis, membrane diffusion capacity (beta, -0.54; SE, 0.018; P<0.0001), peak oxygen consumption (beta, -0.53; SE, 0.036; P=0.004), and ventilation/carbon dioxide production slope (beta, 0.25; SE, 0.026; P=0.034) were independently associated with SPB. CONCLUSIONS: Circulating plasma SPB levels are related to alveolar gas diffusion, overall exercise performance, and efficiency of ventilation showing a link between alveolar-capillary barrier damage, gas exchange abnormalities, and exercise performance in HF.
Resumo:
Ethyl glucuronide (EtG) is a marker of recent alcohol consumption. For the optimization of the analysis of EtG by CZE with indirect absorbance detection, the use of capillaries with permanent and dynamic wall coatings, the composition of the BGE, and various sample preparation procedures, including dilution with water, ultrafiltration, protein precipitation, and SPE, were investigated. Two validated screening assays for the determination of EtG in human serum, a CZE-based approach and an enzyme immunoassay (EIA), are described. The CZE assay uses a coated capillary, 2,4-dimethylglutaric acid as an internal standard, and a pH 4.65 BGE comprising 9 mM nicotinic acid, epsilon-aminocaproic acid and 10% v/v ACN. Proteins are removed via precipitation with ACN prior to analysis and the LOQ is 0.50 mg/L. The EIA is based upon commercial reagents which are promoted for the determination of urinary EtG. Krebs-Ringer solution containing 5% BSA is used as a calibration matrix. All samples are ultrafiltered prior to analysis of the ultrafiltrate on a Mira Plus analyzer. Assay calibration ranged between 0 and 2 mg/L and the upper reference limit was determined to be 0.05 mg/L. Both assays proved to be suitable for the analysis of samples from different individuals. For EtG levels above 0.50 mg/L, good agreement was observed for the comparison of the results of the two methods.
Resumo:
The exact mechanism for capillary occlusion in diabetic retinopathy is still unclear, but increased leukocyte-endothelial cell adhesion has been implicated. We examined the possibility that posttranslational modification of surface O-glycans by increased activity of core 2 transferase (UDP-Glc:Galbeta1-3GalNAcalphaRbeta-N-acetylglucoaminyltr ansferase) is responsible for increased adhesion of leukocytes to vascular endothelium in diabetes. The mean activity of core 2 transferase in polymorphonuclear leukocytes isolated from type 1 and type 2 diabetic patients was higher compared with age-matched control subjects (1,638 +/- 91 [n = 42] vs. 249 +/- 35 pmol x h(-1) x mg(-1) protein [n = 24], P = 0.00013; 1,459 +/- 194 [n = 58] vs. 334 +/- 86 [n = 11], P = 0.01). As a group, diabetic patients with retinopathy had significantly higher mean activity of core 2 transferase compared with individuals with no retinopathy. There was a significant association between enzyme activity and severity of retinopathy in type 1 and type 2 diabetic patients. There was a strong correlation between activity of core 2 transferase and extent of leukocyte adhesion to cultured retinal capillary endothelial cells for diabetic patients but not for age-matched control subjects. Results from transfection experiments using human myelocytic cell line (U937) demonstrated a direct relationship between increased activity of core 2 transferase and increased binding to cultured endothelial cells. There was no relationship between activity of core 2 transferase and HbA(1c) (P = 0.8314), serum advanced glycation end product levels (P = 0.4159), age of the patient (P = 0.7896), and duration of diabetes (P = 0.3307). On the basis that branched O-glycans formed by the action of core 2 transferase participate in leukocyte adhesion, the present data suggest the involvement of this enzyme in increased leukocyte-endothelial cell adhesion and the pathogenesis of capillary occlusion in diabetic retinopathy.
Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network.
Resumo:
Postnatal glucocorticoid treatment of preterm infants was mimicked by treating newborn rats with dexamethasone (0.1-0.01 microg/g, days 1-4). This regimen has been shown to cause delayed alveolarization. Knowing that microvascular maturation (transformation of double- to single-layered capillary networks in alveolar septa) and septal thinning prevent further alveolarization, we measured septal maturation on electron photomicrographs in treated and control animals. In treated rats and before day 10, we observed a premature nonreversing microvascular maturation and a transient septal thinning, which both appeared focally. In vascular casts of both groups, we observed contacts between the two capillary layers of immature alveolar septa, which were predictive for capillary fusions. Studying serial electron microscopic sections of human lungs, we were able to confirm the postulated fusion process for the first time. We conclude that alveolar microvascular maturation indeed occurs by capillary fusion and that the dexamethasone-induced impairment of alveolarization is associated with focal premature capillary fusion.
Resumo:
Intussusceptive capillary growth represents a new principle for microvascular growth as described in the lungs of growing rats. According to this concept, the capillary network expands by the formation of slender transcapillary tissue pillars, which give rise to new vascular meshes. The process was first observed in Mercox casts of the lung microvasculature, which revealed the existence of multiple tiny holes with diameters around 1.5 microns. Consecutive transmission electron microscopic investigation of serial sections demonstrated that the holes corresponded to slender tissue pillars (Burri and Tarek, 1990). The corrosion cast technique thus appears to be an adequate screening method for intussusceptive growth. In the present investigation, Mercox casts of various vascular systems, namely, those of the eye, submandibular gland, heart, liver, stomach, small and large intestine, trachea, kidney, uterus and ovary were prepared from rats aged between 4 and 9 weeks in order to screen them for the existence of the typical tiny holes representing tissue pillars. In all organs investigated, these structures were observed in various locations to a variable degree. They were mainly encountered within dilated vascular segments or at triple or quadruple branching points of the circulation. Even in capillary networks with a three-dimensional arrangement could these pillars be detected. Intussusception thus appears to be a principle of growth appertaining to many vascular systems.
Resumo:
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase ( PDC) and alcohol dehydrogenase ( ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen- specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild- type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen- specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen - pistil interaction.
Resumo:
A CE system featuring an array of 16 contactless conductivity detectors was constructed. The detectors were arranged along 70 cm length of a capillary with 100 cm total length and allow the monitoring of separation processes. As the detectors cannot be accommodated on a conventional commercial instrument, a purpose built set-up employing a sequential injection manifold had to be employed for automation of the fluid handling. Conductivity measurements can be considered universal for electrophoresis and thus any changes in ionic composition can be monitored. The progress of the separation of Na(+) and K(+) is demonstrated. The potential of the system to the study of processes in CZE is shown in two examples. The first demonstrates the differences in the developments of peaks originating from a sample plug with a purely aqueous background to that of a plug containing the analyte ions in the buffer. The second example visualizes the opposite migration of cations and anions from a sample plug that had been placed in the middle of the capillary.