33 resultados para Canonical Correlation Analysis
Resumo:
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r(2) ? -0.86) as well as calcium release (r(2) ? -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r(2) = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.
Resumo:
BACKGROUND: Intravascular ultrasound of drug-eluting stent (DES) thrombosis (ST) reveals a high incidence of incomplete stent apposition (ISA) and vessel remodeling. Autopsy specimens of DES ST show delayed healing and hypersensitivity reactions. The present study sought to correlate histopathology of thrombus aspirates with intravascular ultrasound findings in patients with very late DES ST. METHODS AND RESULTS: The study population consisted of 54 patients (28 patients with very late DES ST and 26 controls). Of 28 patients with very late DES ST, 10 patients (1020+/-283 days after implantation) with 11 ST segments (5 sirolimus-eluting stents, 5 paclitaxel-eluting stents, 1 zotarolimus-eluting stent) underwent both thrombus aspiration and intravascular ultrasound investigation. ISA was present in 73% of cases with an ISA cross-sectional area of 6.2+/-2.4 mm(2) and evidence of vessel remodeling (index, 1.6+/-0.3). Histopathological analysis showed pieces of fresh thrombus with inflammatory cell infiltrates (DES, 263+/-149 white blood cells per high-power field) and eosinophils (DES, 20+/-24 eosinophils per high-power field; sirolimus-eluting stents, 34+/-28; paclitaxel-eluting stents, 6+/-6; P for sirolimus-eluting stents versus paclitaxel-eluting stents=0.09). The mean number of eosinophils per high-power field was higher in specimens from very late DES ST (20+/-24) than in those from spontaneous acute myocardial infarction (7+/-10), early bare-metal stent ST (1+/-1), early DES ST (1+/-2), and late bare-metal stent ST (2+/-3; P from ANOVA=0.038). Eosinophil count correlated with ISA cross-sectional area, with an average increase of 5.4 eosinophils per high-power field per 1-mm(2) increase in ISA cross-sectional area. CONCLUSIONS: Very late DES thrombosis is associated with histopathological signs of inflammation and intravascular ultrasound evidence of vessel remodeling. Compared with other causes of myocardial infarction, eosinophilic infiltrates are more common in thrombi harvested from very late DES thrombosis, particularly in sirolimus-eluting stents, and correlate with the extent of stent malapposition.
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.