35 resultados para CYCLIC CARBONATES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Cyclic recruitment and derecruitment of atelectasis can occur during mechanical ventilation, especially in injured lungs. Experimentally, cyclic recruitment and derecruitment can be quantified by respiration-dependent changes in PaO2 (ΔPaO2), reflecting the varying intrapulmonary shunt fraction within the respiratory cycle. This study investigated the effect of inspiration to expiration ratio upon ΔPaO2 and Horowitz index. DESIGN Prospective randomized study. SETTING Laboratory investigation. SUBJECTS Piglets, average weight 30 ± 2 kg. INTERVENTIONS At respiratory rate 6 breaths/min, end-inspiratory pressure (Pendinsp) 40 cm H2O, positive end-expiratory pressure 5 cm H2O, and FIO2 1.0, measurements were performed at randomly set inspiration to expiration ratios during baseline healthy and mild surfactant depletion injury. Lung damage was titrated by repetitive surfactant washout to induce maximal cyclic recruitment and derecruitment as measured by multifrequency phase fluorimetry. Regional ventilation distribution was evaluated by electrical impedance tomography. Step changes in airway pressure from 5 to 40 cm H2O and vice versa were performed after lavage to calculate PO2-based recruitment and derecruitment time constants (TAU). MEASUREMENTS AND MAIN RESULTS In baseline healthy, cyclic recruitment and derecruitment could not be provoked, whereas in model acute respiratory distress syndrome, the highest ΔPaO2 were routinely detected at an inspiration to expiration ratio of 1:4 (range, 52-277 torr [6.9-36.9 kPa]). Shorter expiration time reduced cyclic recruitment and derecruitment significantly (158 ± 85 torr [21.1 ± 11.3 kPa] [inspiration to expiration ratio, 1:4]; 25 ± 12 torr [3.3 ± 1.6 kPa] [inspiration to expiration ratio, 4:1]; p < 0.0001), whereas the PaO2/FIO2 ratio increased (267 ± 50 [inspiration to expiration ratio, 1:4]; 424 ± 53 [inspiration to expiration ratio, 4:1]; p < 0.0001). Correspondingly, regional ventilation redistributed toward dependent lung regions (p < 0.0001). Recruitment was much faster (TAU: fast 1.6 s [78%]; slow 9.2 s) than derecruitment (TAU: fast 3.1 s [87%]; slow 17.7 s) (p = 0.0078). CONCLUSIONS Inverse ratio ventilation minimizes cyclic recruitment and derecruitment of atelectasis in an experimental model of surfactant-depleted pigs. Time constants for recruitment and derecruitment, and regional ventilation distribution, reflect these findings and highlight the time dependency of cyclic recruitment and derecruitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exposed Glarus thrust displays midcrustal deformation with tens of kilometers of displacement on an ultrathin layer, the principal slip zone (PSZ). Geological observations indicate that this structure resulted from repeated stick-slip events in the presence of highly overpressured fluids. Here we show that the major characteristics of the Glarus thrust movement (localization, periodicity, and evidence of pressurized fluids) can be reconciled by the coupling of two processes, namely, shear heating and fluid release by carbonate decomposition. During this coupling, slow ductile creep deformation raises the temperature through shear heating and ultimately activates the chemical decomposition of carbonates. The subsequent release of highly overpressurized fluids forms and lubricates the PSZ, allowing a ductile fault to move tens of kilometers on millimeter-thick bands in episodic stick-slip events. This model identifies carbonate decomposition as a key process for motion on the Glarus thrust and explains the source of overpressured fluids accessing the PSZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen- and carbon-isotope ratios in the carbonate of benthic ostracodes (Pseudocandona marchica) and molluscs (Pisidium ssp.) were measured across the transitions bordering the Younger Dryas chronozone in littoral lacustrine cores from Gerzensee (Switzerland). The specific biogenic carbonate records confirm the major shifts already visible in the continuous bulk-carbonate oxygen-isotope record (δ18OCc). If corrected for their vital offsets, oxygen-isotope ratios of Pisidium and juvenile P. marchica, both formed in summer, are almost identical to δ18OCc. This bulk carbonate is mainly composed of encrustations of benthic macrophythes (Chara ssp.), also mainly produced during summer. Adult P. marchica, which calcify in winter, show consistently higher δ18O, larger shifts across both transitions, and short positive excursions compared with the summer forms, especially during early Preboreal. Despite such complexity, the δ18O of adult P. marchica probably reflects more accurately the variations of the δ18O of former lake water because, during winter, calcification temperatures are less variable and the water column isotopically uniform. The difference between normalised δ18O of calcite precipitated in winter to that formed in summer can be used to estimate the minimum difference between summer and winter water temperatures. In general, the results indicate warmer summers during the late Allerød and early Preboreal compared with the Younger Dryas. Altogether, the isotopic composition of lake water (δ18OL) and of the dissolved inorganic carbonate (δ13CDIC) reconstructed from adult Pseudocandona marchica, as well as the seasonal water temperature contrasts, indicate that the major shifts in the δ18O of local precipitation at Gerzensee were augmented by changes of the lake's water balance, with relatively higher evaporative loss occurring during the Allerød compared with the Younger Dryas. It is possible that during the early Preboreal the lake might even have been hydrologically closed for a short period. We speculate that such hydrologic changes reflect a combination of varying evapotranspiration and a rearrangement of groundwater recharge during those climatic shifts.