56 resultados para CONVEX-SETS


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO) modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU). The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010), which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several methods based on Kriging have recently been proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such a level set—and not solely its volume—and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first section of this chapter starts with the Buffon problem, which is one of the oldest in stochastic geometry, and then continues with the definition of measures on the space of lines. The second section defines random closed sets and related measurability issues, explains how to characterize distributions of random closed sets by means of capacity functionals and introduces the concept of a selection. Based on this concept, the third section starts with the definition of the expectation and proves its convexifying effect that is related to the Lyapunov theorem for ranges of vector-valued measures. Finally, the strong law of large numbers for Minkowski sums of random sets is proved and the corresponding limit theorem is formulated. The chapter is concluded by a discussion of the union-scheme for random closed sets and a characterization of the corresponding stable laws.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present local stereological estimators of Minkowski tensors defined on convex bodies in ℝ d . Special cases cover a number of well-known local stereological estimators of volume and surface area in ℝ3, but the general set-up also provides new local stereological estimators of various types of centres of gravity and tensors of rank two. Rank two tensors can be represented as ellipsoids and contain information about shape and orientation. The performance of some of the estimators of centres of gravity and volume tensors of rank two is investigated by simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the econometrics literature has shown a growing interest in the study of partially identified models, in which the object of economic and statistical interest is a set rather than a point. The characterization of this set and the development of consistent estimators and inference procedures for it with desirable properties are the main goals of partial identification analysis. This review introduces the fundamental tools of the theory of random sets, which brings together elements of topology, convex geometry, and probability theory to develop a coherent mathematical framework to analyze random elements whose realizations are sets. It then elucidates how these tools have been fruitfully applied in econometrics to reach the goals of partial identification analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach to the reconstruction of depth from light field data. Our method uses dictionary representations and group sparsity constraints to derive a convex formulation. Although our solution results in an increase of the problem dimensionality, we keep numerical complexity at bay by restricting the space of solutions and by exploiting an efficient Primal-Dual formulation. Comparisons with state of the art techniques, on both synthetic and real data, show promising performances.