46 resultados para CHARACTERISATION
Resumo:
This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstrates the importance of such event cleaning techniques for some new physics searches.
Resumo:
BACKGROUND Urgent consultations for skin disorders are commonly done in different settings. Scarce data exist about the characteristics of these patients. OBJECTIVE The aim of this study was to analyse specific characteristics of patients receiving an urgent consultation at a dermatology department in a university hospital. METHODS We prospectively recorded the data of all patients having had an urgent consultation during a period of 12 months. RESULTS We registered 2,222 urgent consultations. The most frequent diagnoses were eczemas (24.8%), dermatomycoses (5.1%) and dermatitis not otherwise specified (4.8%). The most frequent treatments were topical steroids, emollients, topical antibiotics, systemic antihistamines, antibiotics and virostatics. 2.2% of patients were hospitalized, 78.8% asked for a consultation for a disease lasting less than 4 weeks, and 6.9% presented the same day as the skin disease appeared. CONCLUSIONS This study shows the characteristics of patients receiving an urgent dermatologic consultation. It underlines the need for collaboration between dermatologists, other physicians, general practitioners and nurses.
Resumo:
Molecular analysis of Francisella tularensis subsp. holarctica isolates from humans and animals revealed the presence of two subgroups belonging to the phylogenetic groups B.FTNF002-00 and B.13 in Switzerland. This finding suggests a broader spread of this group in Europe than previously reported. Until recently, only strains belonging to the Western European cluster (group B.FTNF002-00) had been isolated from tularaemia cases in Switzerland. The endemic strains belonging to group B.FTNF002-00 are sensitive to erythromycin, in contrast to the strains of the newly detected group B.13 that are resistant to this antibiotic. All the strains tested were susceptible to ciprofloxacin, streptomycin, gentamicin, nalidixic acid and chloramphenicol but showed reduced susceptibility to tetracycline when tested in a growth medium supplemented with divalent cations. The data show a previously undetected spread of group B.13 westwards in Europe, associated with changes in the antibiotic resistance profile relevant to treatment of tularaemia.
Resumo:
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium in- quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 lg g-1),Al (154 ± 15 lg g-1), Li (30 ± 2 lg g-1), Fe (2.2 ± 0.3 lg g-1), Mn (0.34 ± 0.04 lg g-1), Ge (1.7 ± 0.2 lg g-1) and Ga (0.020 ± 0.002 lg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. oncentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
Resumo:
Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enzymes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3) and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanidewas clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1) or eliminating (GlNR2) toxic intermediates after reduction of these compounds. © 2015 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license
Resumo:
Air was sampled from the porous firn layer at the NEEM site in Northern Greenland. We use an ensemble of ten reference tracers of known atmospheric history to characterise the transport properties of the site. By analysing uncertainties in both data and the reference gas atmospheric histories, we can objectively assign weights to each of the gases used for the depth-diffusivity reconstruction. We define an objective root mean square criterion that is minimised in the model tuning procedure. Each tracer constrains the firn profile differently through its unique atmospheric history and free air diffusivity, making our multiple-tracer characterisation method a clear improvement over the commonly used single-tracer tuning. Six firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1σ Gaussian distribution. A comparison between two replicate boreholes drilled 64 m apart shows differences in measured mixing ratio profiles that exceed the experimental error. We find evidence that diffusivity does not vanish completely in the lock-in zone, as is commonly assumed. The ice age- gas age difference (1 age) at the firn-ice transition is calculated to be 182+3−9 yr. We further present the first intercomparison study of firn air models, where we introduce diagnostic scenarios designed to probe specific aspects of the model physics. Our results show that there are major differences in the way the models handle advective transport. Furthermore, diffusive fractionation of isotopes in the firn is poorly constrained by the models, which has consequences for attempts to reconstruct the isotopic composition of trace gases back in time using firn air and ice core records.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
Genetic immunisation is a simple method for producing polyclonal antibodies in mice. By this method, we produced antibodies against bovine interleukin-4 (BoIL-4). After a final injection with a recombinant BoIL-4 protein, nine stable hybridoma cell lines were established which secreted monoclonal antibodies (MAbs) against this cytokine. Specific binding of each of the MAbs to recombinant BoIL-4 produced by Escherichia coli, baculovirus, and Trypanosoma brucei was demonstrated in an indirect ELISA and/or in Western blotting. These MAbs recognise the same antigenic region localised in the first 47 amino acids of the mature protein. None of them was able to neutralise the biological activity of the BoIL-4 under the conditions tested but one allowed the detection of BoIL-4 by flow cytometry.