35 resultados para Buildings -- Repair an reconstruction -- Contests


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acute injury to the triangular fibrocartilage complex (TFCC) with avulsion of the foveal attachment can produce distal radioulnar joint (DRUJ) instability. The avulsed TFCC is translated distally so the footprint will be bathed in synovial fluid from the DRUJ and will become covered in synovitis. If the TFCC fails to heal to the footprint, then persistent instability can occur. The authors describe a surgical technique indicated for the treatment of persistent instability of the DRUJ due to foveal detachment of the TFCC. The procedure utilizes a loop of palmaris longus tendon graft passed through the ulnar aspect of the TFCC and into an osseous tunnel in the distal ulna to reconstruct the foveal attachment. This technique provides stability of the distal ulna to the radius and carpus. We recommend this procedure for chronic instability of the DRUJ due to TFCC avulsion, but recommend that suture repair remain the treatment of choice for acute instability. An arthroscopic assessment includes the trampoline test, hook test, and reverse hook test. DRUJ ballottement under arthroscopic vision details the direction of instability, the functional tear pattern, and unmasks concealed tears. If the reverse hook test demonstrates a functional instability between the TFCC and the radius, then a foveal reconstruction is contraindicated, and a reconstruction that stabilizes the radial and ulnar aspects of the TFCC is required. The foveal reconstruction technique has the advantage of providing a robust anatomically based reconstruction of the TFCC to the fovea, which stabilizes the DRUJ and the ulnocarpal sag.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE The repair of cartilaginous lesions within synovial joints is still an unresolved and weighty clinical problem. Although research activity in this area has been indefatigably sustained, no significant progress has been made during the past decade. The aim of this educational review is to heighten the awareness amongst students and scientists of the basic issues that must be tackled and resolved before we can hope to escape from the whirlpool of stagnation into which we have fallen: cartilage repair redivivus! DESIGN Articular-cartilage lesions may be induced traumatically (e.g., by sports injuries and occupational accidents) or pathologically during the course of a degenerative disease (e.g., osteoarthritis). This review addresses the biological basis of cartilage repair and surveys current trends in treatment strategies, focussing on those that are most widely adopted by orthopaedic surgeons [viz., abrasive chondroplasty, microfracturing/microdrilling, osteochondral grafting and autologous-chondrocyte implantation (ACI)]. Also described are current research activities in the field of cartilage-tissue engineering, which, as a therapeutic principle, holds more promise for success than any other experimental approach. RESULTS AND CONCLUSIONS Tissue engineering aims to reconstitute a tissue both structurally and functionally. This process can be conducted entirely in vitro, initially in vitro and then in vivo (in situ), or entirely in vivo. Three key constituents usually form the building blocks of such an approach: a matrix scaffold, cells, and signalling molecules. Of the proposed approaches, none have yet advanced beyond the phase of experimental development to the level of clinical induction. The hurdles that need to be surmounted for ultimate success are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background A triangular fibrocartilage complex (TFCC) injury can produce distal radioulnar joint (DRUJ) instability. If the foveal attachment is avulsed, it translates distally. The footprint is separated from its origin and will become covered in synovitis, preventing healing. The authors describe a surgical technique for the treatment of instability of the DRUJ due to chronic foveal detachment of the TFCC. Technique The procedure utilizes a loop of autologous palmaris longus tendon graft passed through the ulnar aspect of the TFCC and through an osseous tunnel in the distal ulna to reconstruct the fovel attachment. Patients and Methods We report on nine patients with a mean age of 42. Median follow-up was 13 months. Results The median pain scores measured were reduced from 8 to 3 postoperatively, and all had a stable DRUJ. Conclusions This technique provides stability of the distal ulna to the radius and carpus, with potential for biologic healing through osseous integration. It is a robust, anatomically based reconstruction of the TFCC to the fovea that stabilizes the DRUJ and the ulnar-carpal sag.