60 resultados para Bragg propagation constant
Resumo:
This study quantitatively investigated the analgesic action of a low-dose constant-rate-infusion (CRI) of racemic ketamine (as a 0.5 mg kg(-1) bolus and at a dose rate of 10 microg kg(-1) min(-1)) in conscious dogs using a nociceptive withdrawal reflex (NWR) and with enantioselective measurement of plasma levels of ketamine and norketamine. Withdrawal reflexes evoked by transcutaneous single and repeated electrical stimulation (10 pulses, 5 Hz) of the digital plantar nerve were recorded from the biceps femoris muscle using surface electromyography. Ketamine did not affect NWR thresholds or the recruitment curves after a single nociceptive stimulation. Temporal summation (as evaluated by repeated stimuli) and the evoked behavioural response scores were however reduced compared to baseline demonstrating the antinociceptive activity of ketamine correlated with the peak plasma concentrations. Thereafter the plasma levels at pseudo-steady-state did not modulate temporal summation. Based on these experimental findings low-dose ketamine CRI cannot be recommended for use as a sole analgesic in the dog.
Resumo:
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of isoflurane in Shetland ponies using a sequence of three different supramaximal noxious stimulations at each tested concentration of isoflurane rather than a single stimulation. STUDY DESIGN: Prospective, experimental trial. ANIMALS: Seven 4-year-old, gelding Shetland ponies. METHODS: The MAC of isoflurane was determined for each pony. Three different modes of electrical stimulation were applied consecutively (2 minute intervals): two using constant voltage (90 V) on the gingiva via needle- (CVneedle) or surface-electrodes (CVsurface) and one using constant current (CC; 40 mA) via surface electrodes applied to the skin over the digital nerve. The ability to clearly interpret the responses as positive, the latency of the evoked responses and the inter-electrode resistance were recorded for each stimulus. RESULTS: Individual isoflurane MAC (%) values ranged from 0.60 to 1.17 with a mean (+/-SD) of 0.97 (+/-0.17). The responses were more clearly interpreted with CC, but did not reach statistical significance. The CVsurface mode produced responses with a longer delay. The CVneedle mode was accompanied by variable inter-electrode resistances resulting in uncontrolled stimulus intensity. At 0.9 MAC, the third stimulation induced more positive responses than the first stimulation, independent of the mode of stimulation used. CONCLUSIONS: The MAC of isoflurane in the Shetland ponies was lower than expected with considerable variability among individuals. Constant current surface electrode stimulations were the most repeatable. A summation over the sequence of three supramaximal stimulations was observed around 0.9 MAC. CLINICAL RELEVANCE: The possibility that Shetland ponies require less isoflurane than horses needs further investigation. Constant current surface-electrode stimulations were the most repeatable. Repetitive supramaximal stimuli may have evoked movements at isoflurane concentrations that provide immobility when single supramaximal stimulation was applied.
Resumo:
We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N–75°N and negative anomalies at 25°N–45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January–March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.
Resumo:
Long-term propagation of inner ear-derived progenitor/stem cells beyond the third generation and differentiation into inner ear cell types has been shown to be feasible, but challenging. We investigated whether the known neuroprotective guanidine compound creatine (Cr) promotes propagation of inner ear progenitor/stem cells as mitogen-expanded neurosphere cultures judged from the formation of spheres over passages. In addition, we studied whether Cr alone or in combination with brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation of inner ear progenitors. For this purpose, early postnatal rat spiral ganglia, utricle, and organ of Corti-derived progenitors were grown as floating spheres in the absence (controls) or presence of Cr (5 mM) from passage 3 onward. Similarly, dissociated sphere-derived cultures were differentiated for 14 days in the presence or absence of Cr (5 mM) and spiral ganglia sphere-derived cultures in a combination of Cr with the neurotrophin BDNF (50 ng/ml). We found that the cumulative total number of spheres over all passages was significantly higher after Cr supplementation as compared with controls in all the three inner ear cultures. In contrast, sphere sizes were not affected by the administration of Cr. Administration of Cr during differentiation of spiral ganglia cells resulted in a significantly higher density of β-III-tubulin-positive cells compared with controls, whereas densities of myosin VIIa-positive cells in cultures of utricle and organ of Corti were not affected by the treatment. Importantly, a combination of Cr with the neurotrophin BDNF resulted in further significantly increased densities of β-III-tubulin-positive cells in cultures of spiral ganglia cells as compared with single treatments. In sum, Cr promoted continuing propagation of rat inner ear-derived progenitor cells and supported specifically in combination with BDNF the differentiation of neuronal cell types from spiral ganglion-derived spheres.
Resumo:
We investigate a class of optimal control problems that exhibit constant exogenously given delays in the control in the equation of motion of the differential states. Therefore, we formulate an exemplary optimal control problem with one stock and one control variable and review some analytic properties of an optimal solution. However, analytical considerations are quite limited in case of delayed optimal control problems. In order to overcome these limits, we reformulate the problem and apply direct numerical methods to calculate approximate solutions that give a better understanding of this class of optimization problems. In particular, we present two possibilities to reformulate the delayed optimal control problem into an instantaneous optimal control problem and show how these can be solved numerically with a stateof- the-art direct method by applying Bock’s direct multiple shooting algorithm. We further demonstrate the strength of our approach by two economic examples.
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.
Resumo:
The lack of a permissive cell culture system hampers the study of human parvovirus B19 (B19V). UT7/Epo is one of the few established cell lines that can be infected with B19V but generates none or few infectious progeny. Recently, hypoxic conditions or the use of primary CD36+ erythroid progenitor cells (CD36+ EPCs) have been shown to improve the infection. These novel approaches were evaluated in infection and transfection experiments. Hypoxic conditions or the use of CD36+ EPCs resulted in a significant acceleration of the infection/transfection and a modest increase in the yield of capsid progeny. However, under all tested conditions, genome encapsidation was impaired seriously. Further analysis of the cell culture virus progeny revealed that differently to the wild-type virus, the VP1 unique region (VP1u) was exposed partially and was unable to become further externalized upon heat treatment. The fivefold axes pore, which is used for VP1u externalization and genome encapsidation, might be constricted by the atypical VP1u conformation explaining the packaging failure. Although CD36+ EPCs and hypoxia facilitate B19V infection, large quantities of infectious progeny cannot be generated due to a failure in genome encapsidation, which arises as a major limiting factor for the in vitro propagation of B19V.
Resumo:
An in vitro system allowing the culture of ovine bone marrow-derived macrophages (BMMs) is described. Bone marrow (BM) cells from the sternum of 4- to 9-month-old sheep were cultured in liquid suspension in hydrophobic bags with medium containing 20% autologous serum and 20% fetal calf serum (FCS). Cells with macrophage characteristics were positively selected and increased four- to five-fold between day (d) 0 and d18. Granulocytes and cells of lymphoid appearance including progenitor cells were negatively selected and were diminished 50-fold during this 18-d culture. The addition of macrophage colony-stimulating factor (M-CSF)-containing supernatants to liquid cultures did not significantly improve the yield of BMM in 18-d cultures. In contrast, cell survival at d6 and macrophage cell yield at d18 depended on the concentration and source of serum in the culture medium. FCS and 1:1 mixtures of FCS and autologous serum were superior to autologous serum alone. Analysis of growth requirements of ovine BMMs suggested that they are under more complex growth control than their murine counterparts. In an [3H]thymidine incorporation assay with BM cells collected at different times of culture, d3 or d4 BM cells responded to human recombinant M-CSF, human recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), bovine GM-CSF, murine M-CSF or murine M-CSF-containing supernatants, and bovine interleukin 1 beta (IL-1 beta) in decreasing order of magnitude. Likewise, pure murine BMM populations harvested at d6 responded to homologous GM-CSF, IL-3, and human or murine M-CSF. FCS did not stimulate the proliferation of murine BMMs (d6) and of ovine BM cells (d3 or d4). In contrast, ovine BM cells harvested at d12 responded to FCS by proliferation in a dose-dependent manner but failed to proliferate in the presence of human or murine M-CSF or M-CSF-containing supernatants of mouse and sheep fibroblasts containing mouse macrophage growth-promoting activity. Likewise, various cytokine-containing supernatants and recombinant cytokines (murine IL-3, murine and human GM-CSF, murine and bovine IL-1 beta) did not promote proliferation of ovine d12 BM cells to an extent greater than that achieved with 15% FCS alone. Thus, ovine BMM proliferation is under the control of at least two factors acting in sequence, M-CSF and an unidentified factor contained in FCS. The ovine BMM culture system may provide a model for the analysis of myelomonocytopoiesis in vitro.
Resumo:
Dexmedetomidine and lignocaine IV are used clinically to provide analgesia in horses. The aims of this study were to investigate the antinociceptive effects, plasma concentrations and sedative effects of 2, 4 and 6 µg/kg/h dexmedetomidine IV, with a bolus of 0.96 µg/kg preceding each continuous rate infusion (CRI), and 20, 40 and 60 µg/kg/min lignocaine IV, with a bolus of 550 µg/kg preceding each CRI, in 10 Swiss Warmblood horses. Electrically elicited nociceptive withdrawal reflexes were evaluated by deltoid muscle electromyography. Nociceptive threshold and tolerance were determined by electromyography and behaviour following single and repeated stimulation. Plasma concentrations of drugs were determined by liquid chromatography and mass spectrometry. Sedation was scored on a visual analogue scale. Dexmedetomidine increased nociceptive threshold to single and repeated stimulation for all CRIs, except at 2 µg/kg/h, where no increase in single stimulation nociceptive threshold was observed. Dexmedetomidine increased nociceptive tolerance to single and repeated stimulation at all CRIs. There was large individual variability in dexmedetomidine plasma concentrations and levels of sedation; the median plasma concentration providing antinociceptive effects to all recorded parameters was 0.15 ng/mL, with a range from <0.02 ng/mL (below the lower limit of quantification) to 0.25 ng/mL. Lignocaine increased nociceptive threshold and tolerance to single and repeated stimulation at CRIs of 40 and 60 µg/kg/min, corresponding to plasma lignocaine concentrations >600 ng/mL. Only nociceptive tolerance to repeated stimulation increased at 20 µg/kg/min lignocaine. Lignocaine at 40 µg/kg/min and dexmedetomidine at 4 µg/kg/h were the lowest CRIs resulting in consistent antinociception. Lignocaine did not induce significant sedation.