40 resultados para Bone-grafting
Resumo:
INTRODUCTION: This investigation was designed to compare the histomorphometric results from sinus floor augmentation with anorganic bovine bone (ABB) and a new biphasic calcium phosphate, Straumann Bone Ceramic (BCP). MATERIALS AND METHODS: Forty-eight maxillary sinuses were treated in 37 patients. Residual bone width was > or =6 mm and height was > or =3 mm and <8 mm. Lateral sinus augmentation was used, with grafting using either ABB (control group; 23 sinuses) or BCP (test group; 25 sinuses); sites were randomly assigned to the control or test groups. After 180-240 days of healing, implant sites were created and biopsies taken for histological and histomorphometric analyses. The parameters assessed were (1) area fraction of new bone, soft tissue, and graft substitute material in the grafted region; (2) area fraction of bone and soft tissue components in the residual alveolar ridge compartment; and (3) the percentage of surface contact between the graft substitute material and new bone. RESULTS: Measurable biopsies were available from 56% of the test and 81.8% of the control sites. Histology showed close contact between new bone and graft particles for both groups, with no significant differences in the amount of mineralized bone (21.6+/-10.0% for BCP vs. 19.8+/-7.9% for ABB; P=0.53) in the biopsy treatment compartment of test and control site. The bone-to-graft contact was found to be significantly greater for ABB (48.2+/-12.9% vs. 34.0+/-14.0% for BCP). Significantly less remaining percentage of graft substitute material was found in the BCP group (26.6+/-5.2% vs. 37.7+/-8.5% for ABB; P=0.001), with more soft tissue components (46.4+/-7.7% vs. 40.4+/-7.3% for ABB; P=0.07). However, the amount of soft tissue components for both groups was found not to be greater than in the residual alveolar ridge. DISCUSSION: Both ABB and BCP produced similar amounts of newly formed bone, with similar histologic appearance, indicating that both materials are suitable for sinus augmentation for the placement of dental implants. The potential clinical relevance of more soft tissue components and different resorption characteristics of BCP requires further investigation.
Resumo:
OBJECTIVE: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. MATERIALS AND METHODS: Three standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic beta-tricalcium phosphate (beta-TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. RESULTS: At 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P approximately 0.0005) and beta-TCP (P approximately 0.002). After 4 weeks, there was no significant difference between beta-TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P approximately 0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P approximately 0.003) and beta-TCP (P approximately 0.00004) than with ABB. No difference could be demonstrated between beta-TCP and autograft. beta-TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. CONCLUSION: Both bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
Resumo:
OBJECTIVE: Lateral ridge augmentations are traditionally performed using autogenous bone grafts to support membranes for guided bone regeneration (GBR). The bone-harvesting procedure, however, is accompanied by considerable patient morbidity. AIM: The aim of the present study was to test whether or not resorbable membranes and bone substitutes will lead to successful horizontal ridge augmentation allowing implant installation under standard conditions. MATERIAL AND METHODS: Twelve patients in need of implant therapy participated in this study. They revealed bone deficits in the areas intended for implant placement. Soft tissue flaps were carefully raised and blocks or particles of deproteinized bovine bone mineral (DBBM) (Bio-Oss) were placed in the defect area. A collagenous membrane (Bio-Gide) was applied to cover the DBBM and was fixed to the surrounding bone using poly-lactic acid pins. The flaps were sutured to allow for healing by primary intention. RESULTS: All sites in the 12 patients healed uneventfully. No flap dehiscences and no exposures of membranes were observed. Nine to 10 months following augmentation surgery, flaps were raised in order to visualize the outcomes of the augmentation. An integration of the DBBM particles into the newly formed bone was consistently observed. Merely on the surface of the new bone, some pieces of the grafting material were only partly integrated into bone. However, these were not encapsulated by connective tissue but rather anchored into the newly regenerated bone. In all of the cases, but one, the bone volume following regeneration was adequate to place implants in a prosthetically ideal position and according to the standard protocol with complete bone coverage of the surface intended for osseointegration. Before the regenerative procedure, the average crestal bone width was 3.2 mm and to 6.9 mm at the time of implant placement. This difference was statistically significant (P<0.05, Wilcoxon's matched pairs signed-rank test). CONCLUSION: After a healing period of 9-10 months, the combination of DBBM and a collagen membrane is an effective treatment option for horizontal bone augmentation before implant placement.
Resumo:
OBJECTIVES: To compare the histological features of bone filled with Bio-Oss, Ostim-Paste or PerioGlas placed in defects in the rabbit tibiae by evaluating bone tissue composition and the integration of titanium implants placed in the grafted bone. MATERIAL AND METHODS: Two cylindrical bone defects, about 4 mm in diameter and 6 mm in depth, were created in the tibiae of 10 rabbits. The defects were filled with either Bio-Oss, PerioGlas, Ostim-Paste or left untreated, and covered with a collagen membrane. Six weeks later, one titanium sandblasted and acid-etched (SLA) implant was inserted at the centre of each previously created defect. The animals were sacrificed after 6 weeks of healing. RESULTS: Implants placed in bone previously grafted with Bio-Oss, PerioGlas or Ostim-Paste obtained a larger extent of osseointegration, although not statistically significant, than implants placed in non-grafted bone. The three grafting materials seemed to perform in a similar way concerning their contribution towards implant osseointegration. All grafting materials appeared to be osteoconductive, thus leading to the formation of bridges of mineralized bone extending from the cortical plate towards the implants surface through the graft scaffold. CONCLUSIONS: Grafting with the above-mentioned biomaterials did not add any advantage to the osseointegration of titanium SLA implants in a self-contained defect.
Resumo:
OBJECTIVES: To evaluate the pattern of tissue remodeling after maxillary sinus floor elevation using the transalveolar osteotome technique with or without utilizing grafting materials. METHODS: During the period of 2000-2005, 252 Straumann dental implants were inserted using the transalveolar sinus floor elevation technique in a group of 181 patients. For 88 or 35% of those implants, deproteinized bovine bone mineral with a particle size of 0.25-1 mm was used as the grafting material, but for the remaining 164 implants, no grafting material was utilized. Periapical radiographs were obtained with a paralleling technique and digitized. Two investigators, who were blinded to whether grafting material was used or not, subsequently evaluated the pattern of tissue remodeling. RESULTS: The mean residual bone height was 7.5 mm (SD 2.2 mm), ranging from 2 to 12.7 mm. The mean residual bone height for implants placed with grafting material (6.4 mm) was significantly less compared with the implants installed without grafting material (8.1 mm). The implants penetrated on average 3.1 mm (SD 1.7 mm) into the sinus cavity. The measured mean radiographic bone gain using the transalveolar technique without grafting material was significantly less, 1.7 mm (SD 2 mm) compared with a mean bone gain of 4.1 mm (SD 2.4 mm), when grafting material was used. Furthermore, the probability of gaining 2 mm or more of new bone was 39.1% when no grafting material was used. The probability increased to 77.9% when the implants were installed with grafting material. CONCLUSION: When the transalveolar sinus floor elevation was performed without utilizing grafting material, only a moderate gain of new bone could be detected mesial and distal to the implants. On the other hand, when grafting material was used, a substantial gain of new bone was usually seen on the radiographs.
Resumo:
OBJECTIVES: To analyze the survival and success rates of implants installed utilizing the (transalveolar) osteotome technique, to compare peri-implant soft tissue parameters and marginal bone levels of osteotome-installed implants with implants placed using standard surgical procedures, and to evaluate patient-centered outcomes. MATERIAL AND METHODS: During 2000 to 2005, 252 Straumann dental implants were inserted in 181 patients. The surgical technique was a modification of the original osteotome technique presented by Summers. In addition to the clinical examination, the patients were asked to give their perception of the surgical procedure, utilizing a visual analogue scale. RESULTS: The cumulative survival rate of the osteotome-installed implants after a mean follow-up time of 3.2 years, was 97.4% (95% confidence intervals: 94.4-98.8%). From the 252 implants inserted, three were lost before loading and another three were lost in the first and second year. According to residual bone height the survival was 91.3% for implant sites with < or =4 mm residual bone height, and 90% for sites with 4 mm and 5 mm, when compared with that of 100% in sites with bone height of above 5 mm. According to implant length the survival rates were 100% for 12 mm, 98.7% for 10 mm, 98.7% for 8 mm and only 47.6% for 6 mm implants. Soft tissue parameters (pocket probing depth, probing attachment level, bleeding on probing and marginal bone levels) did not yield any differences between the osteotome-installed and the conventionally placed implants. More than 90% of the patients were satisfied with the implant therapy and would undergo similar therapy again if necessary. The cost associated with implant therapy was considered to be justified. CONCLUSION: In conclusion, the osteotome technique was a reliable method for implant insertion in the posterior maxilla, especially at sites with 5 mm or more of preoperative residual bone height and a relatively flat sinus floor.
Resumo:
OBJECTIVES: This retrospective study reports on histologic and histomorphometric observations performed on human biopsies harvested from sites augmented exclusively by biphasic calcium phosphate [BCP: hydroxyapatite (HA)/ tricalcium phosphate (TCP) 60/40] and healed for a minimum of 6 months. MATERIALS AND METHODS: Five patients benefited from three augmentation regimens (i.e.: one-stage lateral augmentation; two-stage lateral augmentation; and two-stage sinus grafting). In all patients, a degradable collagen membrane served as a cell-occlusive barrier. Core biopsies were obtained from lateral as from crestal aspects 6-10 months after augmentation surgeries. For histologic and histomorphometric evaluations, the non-decalcified tissue processing was performed. RESULTS: The histological examination of 11 biopsies showed graft particles frequently being bridged by the new bone, and a close contact between the graft particles and newly formed bone was seen in all samples. The mean percentages of newly formed bone, soft tissue compartment, and graft material were 38.8% (+/-5.89%), 41.75% (+/-6.08%), and 19.63% (+/-4.85%), respectively. Regarding bone-to-graft contact values, the percentage of bone coverage of graft particles for all biopsies ranged from 27.83% to 80.17%. The mean percentage of bone coverage was 55.39% (+/-13.03%). CONCLUSIONS: Data from the present study demonstrated osteoconductivity scores for the BCP material (HA/TCP 60/40) in patients resembling those previously shown for grafting materials of xenogenic and alloplastic origin.
Resumo:
BACKGROUND: Periodontal therapy using the combination of platelet-rich plasma (PRP) and different grafting materials has been suggested as a modality to enhance the outcome of regenerative surgery. In most clinical studies, a barrier membrane was used to cover the defects, and thus, the effects of PRP may have been masked by the effects of the barrier. The data from controlled clinical studies evaluating the effect of regenerative therapy using various grafting materials with or without PRP are still limited. The purpose of this study was to clinically compare the healing of intrabony defects treated with either a combination of an anorganic bovine bone mineral (ABBM) and PRP to those obtained with ABBM alone. METHODS: Thirty patients with advanced chronic periodontal disease and displaying one intrabony defect were randomly treated with PRP + ABBM or ABBM alone. The following clinical parameters were evaluated at baseline and 1 year after treatment: plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). The primary outcome variable was CAL. RESULTS: No statistical significant differences in any of the investigated parameters between the two groups were observed at baseline. Healing was uneventful in all patients. In the PRP + ABBM group, mean PD decreased from 8.6 +/- 1.8 mm to 3.4 +/- 1.4 mm (P <0.001) and mean CAL changed from 9.9 +/- 1.7 mm to 5.3 +/- 1.8 mm (P <0.001). In the ABBM group, mean PD decreased from 8.5 +/- 2.0 mm to 3.2 +/- 1.3 mm (P <0.001) and mean CAL changed from 9.6 +/- 1.9 mm to 4.9 +/- 1.5 mm (P <0.001). CAL gains >or=3 mm were measured in 80% (12 of 15 defects) of cases treated with PRP + ABBM and in 87% (13 of 15 defects) of cases treated with ABBM alone. No statistically significant differences in any of the investigated parameters were observed between the two groups at the 1-year reevaluation. CONCLUSIONS: Within the limits of the present study, it can be concluded that 1) at 1 year after regenerative surgery with PRP + ABBM and ABBM alone, significant PD reductions and CAL gains were found, and 2) the use of PRP failed to improve the results obtained with ABBM alone.
Resumo:
The aim of this study was to evaluate in humans the amount of new bone after sinus floor elevation with a synthetic bone substitute material consisting of nanocrystalline hydroxyapatite embedded in a highly porous silica gel matrix. The lateral approach was applied in eight patients requiring sinus floor elevation to place dental implants. After elevation of the sinus membrane, the cavities were filled with 0.6-mm granules of nanocrystalline hydroxyapatite mixed with the patient's blood. A collagen membrane (group 1) or a platelet-rich fibrin (PRF) membrane (group 2) was placed over the bony window. After healing periods between 7 and 11 months (in one case after 24 months), 16 biopsy specimens were harvested with a trephine bur during implant bed preparation. The percentage of new bone, residual filler material, and soft tissue was determined histomorphometrically. Four specimens were excluded from the analysis because of incomplete biopsy removal. In all other specimens, new bone was observed in the augmented region. For group 1, the amount of new bone, residual graft material, and soft tissue was 28.7% ± 5.4%, 25.5% ± 7.6%, and 45.8% ± 3.2%, respectively. For group 2, the values were 28.6% ± 6.90%, 25.7% ± 8.8%, and 45.7% ± 9.3%, respectively. All differences between groups 1 and 2 were not statistically significant. The lowest and highest values of new bone were 21.2% and 34.1% for group 1 and 17.4% and 37.8% for group 2, respectively. The amount of new bone after the use of nanocrystalline hydroxyapatite for sinus floor elevation in humans is comparable to values found in the literature for other synthetic or xenogeneic bone substitute materials. There was no additional beneficial effect of the PRF membrane over the non-cross-linked collagen membrane.
Resumo:
The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2.25%). At 8 weeks, percent filler amongst the test groups (DBBM (31.6%), HA-SiO (31.23%), followed by BCP 60/40 (23.65%)) demonstrated a similar pattern and was again significantly higher as compared to autogenous bone (9.29%). Autogenous bone again exhibited statistically significantly greater new bone (55.13%) over HA-SiO (40.62%), BCP 60/40 (40.21%), and DBBM (36.35%). These results suggest that the osteogenic potential of HA-SiO and BCP is inferior when compared to autogenous bone. However, in instances where a low substitution rate is desired to maintain the volume stability of augmented sites, particularly in the esthetic zone, HA-SiO and DBBM may be favored. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1478-1487, 2015.