181 resultados para Biology, Molecular|Biology, Animal Physiology|Health Sciences, Oncology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

FGFRL1 is a member of the fibroblast growth factor receptor (FGFR) family. Similar to the classical receptors FGFR1-FGFR4, it contains three extracellular Ig-like domains and a single transmembrane domain. However, it lacks the intracellular tyrosine kinase domain that would be required for signal transduction, but instead contains a short intracellular tail with a peculiar histidine-rich motif. This motif has been conserved during evolution from mollusks to echinoderms and vertebrates. Only the sequences of FgfrL1 from a few rodents diverge at the C-terminal region from the canonical sequence, as they appear to have suffered a frameshift mutation within the histidine-rich motif. This mutation is observed in mouse, rat and hamster, but not in the closely related rodents mole rat (Nannospalax) and jerboa (Jaculus), suggesting that it has occurred after branching of the Muridae and Cricetidae from the Dipodidae and Spalacidae. The consequence of the frameshift is a deletion of a few histidine residues and an extension of the C-terminus by about 40 unrelated amino acids. A similar frameshift mutation has also been observed in a human patient with a craniosynostosis syndrome as well as in several patients with colorectal cancer and bladder tumors, suggesting that the histidine-rich motif is prone to mutation. The reason why this motif was conserved during evolution in most species, but not in mice, is not clear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wild-type cholecystokinin type 2 (CCK(2)) receptor is expressed in many gastrointestinal and lung tumours. A splice variant of the CCK(2) receptor with retention of intron 4 (CCK(2)Ri4sv) showing constitutive activity associated with increased tumour growth was described in few colorectal, pancreatic and gastric cancers. Given the potential functional and clinical importance of this spliceoform, its occurrence was quantitatively characterized in a broad collection of 81 gastrointestinal and lung tumours, including insulinomas, ileal carcinoids, gastrointestinal stromal tumours (GIST), gastric, colorectal and pancreatic ductal adenocarcinomas, cholangiocellular and hepatocellular carcinomas, small cell lung cancers (SCLC), non-SCLC (nSCLC) and bronchopulmonary carcinoids, as well as 21 samples of corresponding normal tissues. These samples were assessed for transcript expression of total CCK(2) receptor, wild-type CCK(2) receptor and CCK(2)Ri4sv with end-point and real-time RT-PCR, and for total CCK(2) receptor protein expression on the basis of receptor binding with in vitro receptor autoradiography. Wild-type CCK(2) receptor transcripts were found in the vast majority of tumours and normal tissues. CCK(2)Ri4sv mRNA expression was present predominantly in insulinomas (incidence 100%), GIST (100%) and SCLC (67%), but rarely in pancreatic, colorectal and gastric carcinomas and nSCLC. It was not found in wild-type CCK(2) receptor negative tumours or any normal tissues tested. CCK(2)Ri4sv transcript levels in individual tumours were low, ranging from 0.02% to 0.14% of total CCK(2) receptor transcripts. In conclusion, the CCK(2)Ri4sv is a marker of specific gastrointestinal and lung tumours. With its high selectivity for and high incidence in SCLC and GIST, it may represent an attractive clinical target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter the methodological bases are provided to achieve subnanometer resolution on two-dimensional (2D) membrane protein crystals by atomic force microscopy (AFM). This is outlined in detail with the example of AFM studies of the outer membrane protein F (OmpF) from the bacterium Escherichia coli (E. coli). We describe in detail the high-resolution imaging of 2D OmpF crystals in aqueous solution and under near-physiological conditions. The topographs of OmpF, and stylus effects and artifacts encountered when imaging by AFM are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown previously that endogenous flotillin-1 and -2, closely related proteins implicated in scaffolding of membrane microdomains, are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Coexpressed flotillin-1 and -2, but not singly expressed proteins, are also targeted to the uropod of T-cells and neutrophils. Biochemical studies suggest formation of flotillin homo- and hetero-oligomers in other cell types, but so far knowledge is lacking on in situ flotillin organization in leukocytes. We have now analyzed flotillin organization in human T-cells using fluorescence resonance energy transfer (FRET). Coexpressed C-terminally tagged flotillin-1-mCherry and flotillin-2-enhanced green fluorescent protein (EGFP) show significant FRET when analyzed in intact human T-cells in the absence and presence of chemokine. In contrast, little FRET was observed between coexpressed flotillin-1-mCherry and flotillin-1-EGFP before or after chemokine addition, indicating predominant formation of heterodimers and/or -oligomers. Interestingly coexpression of untagged flotillin-2 strongly enhanced FRET between differently tagged flotillin-1 molecules in resting and chemokine-stimulated cells, indicating that close contacts of flotillin-1 molecules only occur in flotillin-2-containing hetero-oligomers. Comparable results were obtained for tagged flotillin-2. We further show that disruption of the actin network, depletion of intracellular calcium, and inhibition of phospholipase C all result in suppression of chemokine-induced polarization and flotillin cap formation, but do not abolish FRET between tagged flotillin-1 and -2. Our results support predominant formation of flotillin-1 and -2 hetero-oligomers in resting and chemokine-stimulated human T-cells which may importantly contribute to structuring of the uropod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite many years of clinical experience with cefepime, data regarding the outcome of patients suffering from bloodstream infections (BSIs) due to Enterobacter cloacae (Ecl) are scarce. To address the gap in our knowledge, 57 Ecl responsible for 51 BSIs were analysed implementing phenotypic and molecular methods (microarrays, PCRs for bla and other genes, rep-PCR to analyse clonality). Only two E. cloacae (3.5%) were ESBL-producers, whereas 34 (59.6%) and 18 (31.6%) possessed inducible (Ind-Ecl) or derepressed (Der-Ecl) AmpC enzymes, respectively. All isolates were susceptible to imipenem, meropenem, gentamicin and ciprofloxacin. Der-Ecl were highly resistant to ceftazidime and piperacillin/tazobactam (both MIC₉₀≥256 μg/mL), whereas cefepime retained its activity (MIC₉₀ of 3 μg/mL). rep-PCR indicated that the isolates were sporadic, but Ecl collected from the same patients were indistinguishable. In particular, three BSIs initially due to Ind-Ecl evolved (under ceftriaxone or piperacillin/tazobactam treatment) into Der-Ecl because of mutations or a deletion in ampD or insertion of IS4321 in the promoter. These last two mechanisms have never been described in Ecl. Mortality was higher for BSIs due to Der-Ecl than Ind-Ecl (3.8% vs. 29.4%; P=0.028) and was associated with the Charlson co-morbidity index (P=0.046). Using the following directed treatments, patients with BSI showed a favourable treatment outcome: cefepime (16/18; 88.9%); carbapenems (12/13; 92.3%); ceftriaxone (4/7; 57.1%); piperacillin/tazobactam (5/7; 71.4%); and ciprofloxacin (6/6; 100%). Cefepime represents a safe therapeutic option and an alternative to carbapenems to treat BSIs due to Ecl when the prevalence of ESBL-producers is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological pregnancy is associated with an increase in lipids from the first to the third trimester. This is a highly regulated response to satisfy energy and membrane demands of the developing fetus. Pregnancy disorders, such as pre-eclampsia, are associated with a dysregulation of lipid metabolism manifesting in increased maternal plasma lipid levels. In fetal placental tissue, only scarce information on the lipid profile is available, and data for gestational diseases are lacking. In the present study, we investigated the placental lipid content in control versus pre-eclamptic samples, with the focus on tissue phospholipid levels and composition. We found an increase in total phospholipid content as well as changes in individual phospholipid classes in pre-eclamptic placental tissues compared to controls. These alterations could be a source of placental pathological changes in pre-eclampsia, such as lipid peroxide insult or dysregulation of lipid transport across the syncytiotrophoblast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transporters for vitamin C and its oxidized form dehydroascorbic acid (DHA) are crucial to maintain physiological concentrations of this important vitamin that is used in a variety of biochemical processes. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (encoded by the SLC23A1 gene) and SVCT2 (SLC23A2) as well as an orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter (NAT) family, although no nucleobase transport has yet been demonstrated for the human members of this family. The SVCT1 and SVCT2 transporters are rather specific for ascorbic acid, which is an important antioxidant and plays a crucial role in a many metal-containing enzymes. SVCT1 is expressed predominantly in epithelial tissues such as intestine where it contributes to the supply and maintenance of whole-body ascorbic acid levels. In contrast to various other mammals, humans are not capable of synthesizing ascorbic acid from glucose and therefore the uptake of ascorbic acid from the diet via SVCT1 is essential for maintaining appropriate concentrations of vitamin C in the human body. The expression of SVCT2 is relatively widespread, where it serves to either deliver ascorbic acid to tissues with high demand of the vitamin for enzymatic reactions or to protect metabolically highly active cells or specialized tissues from oxidative stress. The murine Slc23a3 gene encoding the orphan transporter SVCT3 was originally cloned from mouse yolk sac, and subsequent studies showed that it is expressed in the kidney. However, the function of SVCT3 has not been reported and it remains speculative as to whether SVCT3 is a nucleobase transporter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of vitamin E to modulate signal transduction and gene expression has been observed in numerous studies; however, the detailed molecular mechanisms involved are often not clear. The eight natural vitamin E analogues and synthetic derivatives affect signal transduction with different potency, possibly reflecting their different ability to interact with specific proteins. Vitamin E modulates the activity of several enzymes involved in signal transduction, such as protein kinase C, protein kinase B, protein tyrosine kinases, 5-, 12-, and 15-lipoxygenases, cyclooxygenase-2, phospholipase A2, protein phosphatase 2A, protein tyrosine phosphatase, and diacylglycerol kinase. Activation of some these enzymes after stimulation of cell surface receptors with growth factors or cytokines can be normalized by vitamin E. At the molecular level, the translocation of several of these enzymes to the plasma membrane is affected by vitamin E, suggesting that the modulation of protein-membrane interactions may be a common theme for vitamin E action. In this review the main effects of vitamin E on enzymes involved in signal transduction are summarized and the possible mechanisms leading to enzyme modulation evaluated. The elucidation of the molecular and cellular events affected by vitamin E could reveal novel strategies and molecular targets for developing similarly acting compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of improved antimicrobial therapy, bacterial meningitis still results in brain damage leading to significant long-term neurological sequelae in a substantial number of survivors, as confirmed by several recent studies. Meningitis caused by Streptococcus pneumoniae is associated with a particularly severe outcome. Experimental studies over the past few years have increased our understanding of the molecular mechanisms underlying the events that ultimately lead to brain damage during meningitis. Necrotic damage to the cerebral cortex is at least partly mediated by ischemia and oxygen radicals and therefore offers a promising target for adjunctive therapeutic intervention. Neuronal apoptosis in the hippocampus may represent the major pathological process responsible for cognitive impairment and learning disabilities in survivors. However, the mechanisms involved in causing this damage remain largely unknown. Anti-inflammatory treatment with corticosteroids aggravates hippocampal damage, thus underlining the potential shortcomings of current adjuvant strategies. In contrast, the combined inhibition of matrix metalloproteinase and tumour necrosis factor-alpha converting enzyme protected both the cortex and hippocampus in experimental meningitis, and may represent a promising new approach to adjunctive therapy. It is the hope that a more refined molecular understanding of the pathogenesis of brain damage during bacterial meningitis will lead to new adjunctive therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities, such intentional and unintentional transplantations, and habitat alterations including the establishment of migration corridors, generate increasing opportunities for formerly allopatric taxa to meet and to hybridize. There is indeed increasing evidence that these introduced plant and animal taxa (including crop plants and domesticated animal taxa) frequently hybridize with native relatives and with other introduced taxa, leading to a growing concern that these hybridizations may compromise the genetic integrity of native taxa to the point of causing extinctions (Abbott 1992; Rhymer and Simberloff 1996; Levin et al. 1996; Ellstrand and Schierenbeck 2000; Vilà et al. 2000). A decade ago, Rhymer and Simberloff (1996) stated in their review on this topic that the known cases are probably just the tip of the iceberg.Using the search term ‘hybridization and introgression’, the Web of Science database yields a total of 1,178 research articles, of which 935 (or 80 %) have been published after 1995 (Fig. 16.1). Indeed, the evidence for natural and man-induced hybridization and introgression appears to have increased exponentially these last few years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustained high-level exposure to glutamate, an excitatory amino acid neurotransmitter, leads to neuronal death. Kynurenic acid attenuates the toxic effects of glutamate by inhibition of neuronal excitatory amino acid receptors, including the N-methyl-D-aspartate subtype. To evaluate the role of glutamate in causing neuronal injury in a rat model of meningitis due to group B streptococci, animals were treated with kynurenic acid (300 mg/kg subcutaneously once daily) or saline beginning at the time of infection. Histopathologic examination after 24-72 h showed two distinct forms of neuronal injury, areas of neuronal necrosis in the cortex and injury of dentate granule cells in the hippocampus. Animals treated with kynurenic acid showed significantly less neuronal injury (P < .03) in the cortex and the hippocampus than did untreated controls. These results suggest an important contribution of glutamate to neurotoxicity in this animal model of neonatal meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ntense liver regeneration and almost 100% survival follows partial hepatectomy of up to 70% of liver mass in rodents. More extensive resections of 70 to 80% have an increased mortality and partial hepatectomies of >80% constantly lead to acute hepatic failure and death in mice. The aim of the study was to determine the effect of systemically administered granulocyte colony stimulating factor (G-CSF) on animal survival and liver regeneration in a small for size liver remnant mouse model after 83% partial hepatectomy (liver weight <0.8% of mouse body weight). Methods: Male Balb C mice (n=80, 20-24g) were preconditioned daily for five days with 5μg G-CSF subcutaneously or sham injected (aqua ad inj). Subsequently 83% hepatic resection was performed and daily sham or G-CSF injection continued. Survival was determined in both groups (G-CSF n=35; Sham: n=33). In a second series BrdU was injected (50mg/kg Body weight) two hours prior to tissue harvest and animals euthanized 36 and 48 hours after 83% liver resection (n=3 each group). To measure hepatic regeneration the BrdU labeling index and Ki67 expression were determined by immunohistochemistry by two independent observers. Harvested liver tissue was dried to constant weight at 65 deg C for 48 hours. Results: Survival was 0% in the sham group on day 3 postoperatively and significantly better (26.2% on day 7 and thereafter) in the G-CSF group (Log rank test: p<0.0001). Dry liver weight was increased in the G-CSF group (T-test: p<0.05) 36 hours after 83% partial hepatectomy. Ki67 expression was elevated in the G-CSF group at 36 hours (2.8±2.6% (Standard deviation) vs 0.03±0.2%; Rank sum test: p<0.0001) and at 48 hours (45.1±34.6% vs 0.7±1.0%; Rank sum test: p<0.0001) after 83% liver resection. BrdU labeling at 48 hours was 0.1±0.3% in the sham and 35.2±34.2% in the G-CSF group (Rank sum test: p<0.0001) Conclusions: The surgical 83% resection mouse model is suitable to test hepatic supportive regimens in the setting of small for size liver remnants. Administration of G-CSF supports hepatic regeneration after microsurgical 83% partial hepatectomy and leads to improved long-term survival in the mouse. G-CSF might prove to be a clinically valuable supportive substance in small for size liver remnants in humans after major hepatic resections due to primary or secondary liver tumors or in the setting of living related liver donation.