43 resultados para Biogeochemical data field data


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present the data assimilation approach, which provides a framework for combining observations and model simulations of the climate system, and has led to a new field of applications for paleoclimatology. The three subsequent articles explore specific applications in more detail.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Due to highly erodible volcanic soils and a harsh climate, livestock grazing in Iceland has led to serious soil erosion on about 40% of the country's surface. Over the last 100 years, various revegetation and restoration measures were taken on large areas distributed all over Iceland in an attempt to counteract this problem. The present research aimed to develop models for estimating percent vegetation cover (VC) and aboveground biomass (AGB) based on satellite data, as this would make it possible to assess and monitor the effectiveness of restoration measures over large areas at a fairly low cost. Models were developed based on 203 vegetation cover samples and 114 aboveground biomass samples distributed over five SPOT satellite datasets. All satellite datasets were atmospherically corrected, and digital numbers were converted into ground reflectance. Then a selection of vegetation indices (VIs) was calculated, followed by simple and multiple linear regression analysis of the relations between the field data and the calculated VIs. Best results were achieved using multiple linear regression models for both %VC and AGB. The model calibration and validation results showed that R2 and RMSE values for most VIs do not vary very much. For percent VC, R2 values range between 0.789 and 0.822, leading to RMSEs ranging between 15.89% and 16.72%. For AGB, R2 values for low-biomass areas (AGB < 800 g/m2) range between 0.607 and 0.650, leading to RMSEs ranging between 126.08 g/m2 and 136.38 g/m2. The AGB model developed for all areas, including those with high biomass coverage (AGB > 800 g/m2), achieved R2 values between 0.487 and 0.510, resulting in RMSEs ranging from 234 g/m2 to 259.20 g/m2. The models predicting percent VC generally overestimate observed low percent VC and slightly underestimate observed high percent VC. The estimation models for AGB behave in a similar way, but over- and underestimation are much more pronounced. These results show that it is possible to estimate percent VC with high accuracy based on various VIs derived from SPOT satellite data. AGB of restoration areas with low-biomass values of up to 800 g/m2 can likewise be estimated with high accuracy based on various VIs derived from SPOT satellite data, whereas in the case of high biomass coverage, estimation accuracy decreases with increasing biomass values. Accordingly, percent VC can be estimated with high accuracy anywhere in Iceland, whereas AGB is much more difficult to estimate, particularly for areas with high-AGB variability.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning Sys- tem (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Insti- tute of the University of Bern (AIUB) LEO precise or- bit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numeri- cal integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to effi- ciently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circula- tion Explorer (GOCE).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

RATIONALELow-budget rain collectors for water isotope analysis, such as the `ball-in-funnel type collector' (BiFC), are widely used in studies on stable water isotopes of rain. To date, however, an experimental quality assessment of such devices in relation to climatic factors does not exist. METHODSWe used Cavity Ring-Down Spectrometry (CRDS) to quantify the effects of evaporation on the O-18 values of reference water under controlled conditions as a function of the elapsed time between rainfall and collection for isotope analysis, the sample volume and the relative humidity (RH: 31% and 67%; 25 degrees C). The climate chamber conditions were chosen to reflect the warm and dry end of field conditions that favor evaporative enrichment (EE). We also tested the performance of the BiFC in the field, and compared our H-2/O-18 data obtained by isotope ratio mass spectrometry (IRMS) with those from the Swiss National Network for the Observation of Isotopes in the Water Cycle (ISOT). RESULTSThe EE increased with time, with a 1 increase in the O-18 values after 10days (RH: 25%; 25 degrees C; 35mL (corresponding to a 5mm rain event); p <0.001). The sample volume strongly affected the EE (max. value +1.5 parts per thousand for 7mL samples (i.e., 1mm rain events) after 72h at 31% and 67% RH; p <0.001), whereas the relative humidity had no significant effect. Using the BiFC in the field, we obtained very tight relationships of the H-2/O-18 values (r(2) 0.95) for three sites along an elevational gradient, not significantly different from that of the next ISOT station. CONCLUSIONSSince the chosen experimental conditions were extreme compared with the field conditions, it was concluded that the BiFC is a highly reliable and inexpensive collector of rainwater for isotope analysis. Copyright (c) 2014 John Wiley & Sons, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A feasibility study by Pail et al. (Can GOCE help to improve temporal gravity field estimates? In: Ouwehand L (ed) Proceedings of the 4th International GOCE User Workshop, ESA Publication SP-696, 2011b) shows that GOCE (‘Gravity field and steady-state Ocean Circulation Explorer’) satellite gravity gradiometer (SGG) data in combination with GPS derived orbit data (satellite-to-satellite tracking: SST-hl) can be used to stabilize and reduce the striping pattern of a bi-monthly GRACE (‘Gravity Recovery and Climate Experiment’) gravity field estimate. In this study several monthly (and bi-monthly) combinations of GRACE with GOCE SGG and GOCE SST-hl data on the basis of normal equations are investigated. Our aim is to assess the role of the gradients (solely) in the combination and whether already one month of GOCE observations provides sufficient data for having an impact in the combination. The estimation of clean and stable monthly GOCE SGG normal equations at high resolution ( >  d/o 150) is found to be difficult, and the SGG component, solely, does not show significant added value to monthly and bi-monthly GRACE gravity fields. Comparisons of GRACE-only and combined monthly and bi-monthly solutions show that the striping pattern can only be reduced when using both GOCE observation types (SGG, SST-hl), and mainly between d/o 45 and 60.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a new thermodynamic activity-composition model for di-trioctahedral chlorite in the system FeO–MgO–Al2O3–SiO2–H2O that is based on the Holland–Powell internally consistent thermodynamic data set. The model is formulated in terms of four linearly independent end-members, which are amesite, clinochlore, daphnite and sudoite. These account for the most important crystal-chemical substitutions in chlorite, the Fe–Mg, Tschermak and di-trioctahedral substitution. The ideal part of end-member activities is modeled with a mixing-on-site formalism, and non-ideality is described by a macroscopic symmetric (regular) formalism. The symmetric interaction parameters were calibrated using a set of 271 published chlorite analyses for which robust independent temperature estimates are available. In addition, adjustment of the standard state thermodynamic properties of sudoite was required to accurately reproduce experimental brackets involving sudoite. This new model was tested by calculating representative P–T sections for metasediments at low temperatures (<400 °C), in particular sudoite and chlorite bearing metapelites from Crete. Comparison between the calculated mineral assemblages and field data shows that the new model is able to predict the coexistence of chlorite and sudoite at low metamorphic temperatures. The predicted lower limit of the chloritoid stability field is also in better agreement with petrological observations. For practical applications to metamorphic and hydrothermal environments, two new semi-empirical chlorite geothermometers named Chl(1) and Chl(2) were calibrated based on the chlorite + quartz + water equilibrium (2 clinochlore + 3 sudoite = 4 amesite + 4 H2O + 7 quartz). The Chl(1) thermometer requires knowledge of the (Fe3+/ΣFe) ratio in chlorite and predicts correct temperatures for a range of redox conditions. The Chl(2) geothermometer which assumes that all iron in chlorite is ferrous has been applied to partially recrystallized detrital chlorite from the Zone houillère in the French Western Alps.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Investigations have shown that the analysis results of ground level enhancements (GLEs) based on neutron monitor (NM) data for a selected event can differ considerably depending the procedure used. This may have significant consequences e.g. for the assessment of radiation doses at flight altitudes. The reasons for the spread of the GLE parameters deduced from NM data can be manifold and are at present unclear. They include differences in specific properties of the various analysis procedures (e.g. NM response functions, different ways in taking into account the dynamics of the Earth’s magnetospheric field), different characterisations of the solar particle flux near Earth as well as the specific selection of NM stations used for the analysis. In the present paper we quantitatively investigate this problem for a time interval during the maximum phase of the GLE on 13 December 2006. We present and discuss the changes in the resulting GLE parameters when using different NM response functions, different model representations of the Earth’s magnetospheric field as well as different assumptions for the solar particle spectrum and pitch angle distribution near Earth. The results of the study are expected to yield a basis for the reduction in the spread of the GLE parameters deduced from NM data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

OBJECTIVES The purpose of the study was to provide empirical evidence about the reporting of methodology to address missing outcome data and the acknowledgement of their impact in Cochrane systematic reviews in the mental health field. METHODS Systematic reviews published in the Cochrane Database of Systematic Reviews after January 1, 2009 by three Cochrane Review Groups relating to mental health were included. RESULTS One hundred ninety systematic reviews were considered. Missing outcome data were present in at least one included study in 175 systematic reviews. Of these 175 systematic reviews, 147 (84%) accounted for missing outcome data by considering a relevant primary or secondary outcome (e.g., dropout). Missing outcome data implications were reported only in 61 (35%) systematic reviews and primarily in the discussion section by commenting on the amount of the missing outcome data. One hundred forty eligible meta-analyses with missing data were scrutinized. Seventy-nine (56%) of them had studies with total dropout rate between 10 and 30%. One hundred nine (78%) meta-analyses reported to have performed intention-to-treat analysis by including trials with imputed outcome data. Sensitivity analysis for incomplete outcome data was implemented in less than 20% of the meta-analyses. CONCLUSIONS Reporting of the techniques for handling missing outcome data and their implications in the findings of the systematic reviews are suboptimal.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Project justification is regarded as one of the major methodological deficits in Data Warehousing practice. As reasons for applying inappropriate methods, performing incomplete evaluations, or even entirely omitting justifications, the special nature of Data Warehousing benefits and the large portion of infrastructure-related activities are stated. In this paper, the economic justification of Data Warehousing projects is analyzed, and first results from a large academiaindustry collaboration project in the field of non-technical issues of Data Warehousing are presented. As conceptual foundations, the role of the Data Warehouse system in corporate application architectures is analyzed, and the specific properties of Data Warehousing projects are discussed. Based on an applicability analysis of traditional approaches to economic IT project justification, basic steps and responsibilities for the justification of Data Warehousing projects are derived.