51 resultados para Basaltic soils


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subseafloor environments preserved in Archean greenstone belts provide an analogue for investigating potential subsurface habitats on Mars. The c. 3.5-3.4 Ga pillow lava metabasalts of the mid-Archean Barberton greenstone belt, South Africa, have been argued to contain the earliest evidence for microbial subseafloor life. This includes candidate trace fossils in the form of titanite microtextures, and sulfur isotopic signatures of pyrite preserved in metabasaltic glass of the c. 3.472 Ga Hooggenoeg Formation. It has been contended that similar microtextures in altered martian basalts may represent potential extraterrestrial biosignatures of microbe-fluid-rock interaction. But despite numerous studies describing these putative early traces of life, a detailed metamorphic characterization of the microtextures and their host alteration conditions in the ancient pillow lava metabasites is lacking. Here, we present a new nondestructive technique with which to study the in situ metamorphic alteration conditions associated with potential biosignatures in mafic-ultramafic rocks of the Hooggenoeg Formation. Our approach combines quantitative microscale compositional mapping by electron microprobe with inverse thermodynamic modeling to derive low-temperature chlorite crystallization conditions. We found that the titanite microtextures formed under subgreenschist to greenschist facies conditions. Two chlorite temperature groups were identified in the maps surrounding the titanite microtextures and record peak metamorphic conditions at 315 ± 40°C (XFe3+(chlorite) = 25-34%) and lower-temperature chlorite veins/microdomains at T = 210 ± 40°C (lower XFe3+(chlorite) = 40-45%). These results provide the first metamorphic constraints in textural context on the Barberton titanite microtextures and thereby improve our understanding of the local preservation conditions of these potential biosignatures. We suggest that this approach may prove to be an important tool in future studies to assess the biogenicity of these earliest candidate traces of life on Earth. Furthermore, we propose that this mapping approach could also be used to investigate altered mafic-ultramafic extraterrestrial samples containing candidate biosignatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthy soils are critical to agriculture, and both are essential to enabling food security. Soil-related challenges include using soils and other natural resources sustainably, combating land and soil degradation, avoiding further reduction of soil-related ecosystem services, and ensuring that all agricultural land is managed sustainably. Agricultural challenges include improving the quantity and quality of agricultural outputs to satisfy rising human needs, also in a 2 degrees world; maintaining diversity in agricultural systems while supporting those farms with the highest potential for closing existing yield gaps; and providing a livelihood for about 2.6 billion mostly poor land users. The greatest needs and potentials lie in small-scale farming, although there as elsewhere, trade-offs must be negotiated within the nexus of water, energy, land and food, including the role of soil therein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthy soils are fundamental to life. They grow the food we eat and the wood we use for shelter and fuel, purify the water we drink, and hold fast to the roots of the natural world we cherish. They are the ground beneath our feet and beneath our homes. But they are under threat, especially from human overuse and climate change. Nowhere is this more evident than in dryland areas, where soil degradation – or desertification – wears away at this essential resource, sometimes with sudden rapidity when a tipping point is crossed. Though it is a challenge, preserving and restoring healthy soils in drylands is possible, and it concerns all of us. Sustainable land management points the way.