51 resultados para Bacterial Protein Secretion
Resumo:
We investigated the protein expression of gelatinases [matrix metalloproteinase (MMP)-2 and -9] and collagenases (MMP-8 and -13) in cerebrospinal fluid (CSF) from patients with bacterial (BM, n = 17) and aseptic (AM, n = 14) meningitis. In both, MMP-8 and -9 were increased in 100% of patients, whereas MMP-13 was detectable in 53% and 82% respectively. Three patients with clinical signs of meningitis, without CSF pleocytosis, scored positive for all three MMPs. MMP-8 appeared in two isoforms, granulocyte-type [polymorphonuclear cell (PMN)] and fibroblast/macrophage (F/M) MMP-8. Analysis of kinetic changes from serial lumbar punctures showed that these MMPs are independently regulated, and correlate only partly with CSF cytosis or levels of the endogenous inhibitor, tissue inhibitor of matrix metalloproteinase-1. In vitro, T cells, peripheral blood mononuclear cells (PBMCs) and granulocytes (PMN) release MMP-8 and -9, whereas MMP-13 could be found only in the former two cell types. Using models of exogenous (n-formyl-Met-Leu-Phe, T cell receptor cross-linking) and host-derived stimuli (interleukin-2), the kinetics and the release of the MMP-8, -9 and -13 showed strong variation between these immune cells and suggest release from preformed stocks. In addition, MMP-9 is also synthesized de novo in PBMCs and T cells. In conclusion, invading immune cells contribute only partially to MMPs in CSF during meningitis, and parenchymal cells are an equally relevant source. In this context, in patients with clinical signs of meningitis, but without CSF pleocytosis, MMPs seem to be a highly sensitive marker for intrathecal inflammation. The present data support the concept that broad-spectrum enzyme inhibition targeting gelatinases and collagenases is a potential strategy for adjunctive therapy in infectious meningitis.
Resumo:
BACKGROUND: Periodontitis has been identified as a potential risk factor in cardiovascular diseases. It is possible that the stimulation of host responses to oral infections may result in vascular damage and the inducement of blood clotting. The aim of this study was to assess the role of periodontal infection and bacterial burden as an explanatory variable to the activation of the inflammatory process leading to acute coronary syndrome (ACS). METHODS: A total of 161 consecutive surviving cases admitted with a diagnosis of ACS and 161 control subjects, matched with cases according to their gender, socioeconomic level, and smoking status, were studied. Serum white blood cell (WBC) counts, high- and low-density lipoprotein (HDL/LDL) levels, high-sensitivity C-reactive protein (hsC-rp) levels, and clinical periodontal routine parameters were studied. The subgingival pathogens were assayed by the checkerboard DNA-DNA hybridization method. RESULTS: Total oral bacterial load was higher in the subjects with ACS (mean difference: 17.4x10(5); SD: 10.8; 95% confidence interval [CI]: 4.2 to 17.4; P<0.001), and significant for 26 of 40 species including Porphyromonas gingivalis, Tannerella forsythensis, and Treponema denticola. Serum WBC counts, hsC-rp levels, Streptococcus intermedius, and Streptococcus sanguis, were explanatory factors to acute coronary syndrome status (Nagelkerke r2=0.49). CONCLUSION: The oral bacterial load of S. intermedius, S. sanguis, Streptococcus anginosus, T. forsythensis, T. denticola, and P. gingivalis may be concomitant risk factors in the development of ACS.
Resumo:
HIT cells have been widely used to study synthesis and secretion of insulin. It has been assumed that this cell line secretes no other islet hormones. To ascertain whether HIT cells synthesize, secrete, and degrade glucagon, we examined cell extracts for this peptide and compared secretion and degradation of glucagon and insulin during stimulation of the cells by arginine. Glucagon levels in acid extracts of HIT cells were found to be 0.72 +/- 0.15 pmol/mg protein. Both glucagon and insulin were maximally stimulated in a glucagon/insulin molar ratio of 0.029 by arginine concentrations of 25-50 nM, and the concentration of arginine that provided half-maximum responses for both hormones was approximately 3 mM. Diminution of arginine-induced glucagon secretion was caused by somatostatin, a physiological inhibitor of pancreatic islet alpha-cell function. HPLC was used to authenticate the glucagon levels stimulated by arginine for 60 min and measured by RIA. Thirty-six percent of immunoreactive glucagon was found in the fractions representing authentic glucagon, whereas the remaining 64% eluted earlier. Experiments examining the fate of radiolabeled glucagon exposed to HIT cells revealed time-dependent degradation of the radioisotope to earlier eluting forms, which accounted for approximately 50% of the radioactivity by 60 min and was complete by 18 h, indicating that the early peak detected by RIA represented a metabolite of glucagon. Radioisotopic insulin was degraded more slowly with an apparent half-life of approximately 36 h. We conclude that HIT cells are not only able to synthesize, secrete, and degrade insulin, but also much smaller amounts of glucagon.
Resumo:
BACKGROUND: The aim of this study was to evaluate the inhibitory growth effects of different potential chemopreventive agents in vitro and to determine their influence on PSA mRNA and protein expression with an established screening platform. METHODS: LNCaP and C4-2 cells were incubated with genistein, seleno-L-methionine, lycopene, DL-alpha-tocopherol, and trans-beta-carotene at three different concentrations and cell growth was determined by the MTT assay. PSA mRNA expression was assessed by quantitative real-time RT-PCR and secreted PSA protein levels were quantified by the microparticle enzyme immunoassay. RESULTS: Genistein, seleno-l-methionine and lycopene inhibited LNCaP cell growth, and the proliferation of C4-2 cells was suppressed by seleno-L-methionine and lycopene. PSA mRNA expression was downregulated by genistein in LNCaP but not C4-2 cells. No other compound tested altered PSA mRNA expression. PSA protein expression was downregulated by genistein, seleno-L-methionine, DL-alpha-tocopherol in LNCaP cells. In C4-2 cells only genistein significantly reduced the secretion of PSA protein. CONCLUSIONS: In the LNCaP progression model PSA expression depends on the compound, its concentration and on the hormonal dependence of the cell line used and does not necessarily reflect cell growth or death. Before potential substances are evaluated in clinical trials using PSA as a surrogate end point marker, their effect on PSA mRNA and protein expression has to be considered to correctly assess treatment response by PSA.
Resumo:
BACKGROUND: Hepatic steatosis may promote progression of chronic hepatitis C (CHC). Microsomal triglyceride transfer protein (MTP) is required for assembly and secretion of ApoB lipoprotein and is implicated in hepatitis C virus (HCV)-related steatosis. The MTP -493G/T polymorphism may promote liver fat accumulation, but its role in HCV-related steatosis is still unclear. METHODS: Two hundred ninety-eight CHC patients were studied and genotyped for MTP -493G/T variants. Hepatic MTP mRNA expression and activity were determined in a subgroup. RESULTS: Patients with grades 2/3 steatosis were older, had a higher body mass index (BMI), more advanced fibrosis and lower MTP mRNA expression and carried more often HCV genotype 3 and the MTP T allele. Age, BMI, HCV-3 and MTP T allele [odds ratio (OR) 2.05; 95% confidence interval (CI) 1.2-3.53; P=0.009] were independent risk factors for steatosis grades 2/3, and in HCV genotype non-3 patients, the MTP T allele was the strongest predictor for steatosis grade 2/3 (OR 2.17; 95% CI 1.22-3.86; P=0.008). Moreover, TT carriers had higher high-density lipoprotein (65.6+/-14.6 vs 56.1+/-16.2 mg/dl; P=0.003) and apolipoprotein AI (1.80+/-0.3 vs 1.60+/-0.3 g/L; P=0.005) levels than G allele carriers. CONCLUSIONS: Chronic hepatitis C patients with the MTP -493T allele reveal higher grades of steatosis, indicating a relevant contribution to liver fat accumulation, particularly in HCV non-3 patients.
Resumo:
Dietary exposure to prion-contaminated materials has caused kuru and variant Creutzfeldt-Jakob disease in humans and transmissible spongiform encephalopathies (TSEs) in cattle, mink, and felines. The epidemiology of dietary prion infections suggests that host genetic modifiers and possibly exogenous cofactors may play a decisive role in determining disease susceptibility. However, few cofactors influencing susceptibility to prion infection have been identified. In the present study, we investigated whether colitis might represent one such cofactor. We report that moderate colitis caused by an attenuated Salmonella strain more than doubles the susceptibility of mice to oral prion infection and modestly accelerates the development of disease after prion challenge. The prion protein was up-regulated in intestines and mesenteric lymph nodes of mice with colitis, providing a possible mechanism for the effect of colitis on the pathogenesis of prion disease. Therefore, moderate intestinal inflammation at the time of prion exposure may constitute one of the elusive risk factors underlying the development of TSE.
Resumo:
Pleckstrin is a modular platelet protein consisting of N- and C-terminal pleckstrin homology (PH) domains, a central dishevelled egl10 and pleckstrin (DEP) domain and a phosphorylation region. Following agonist-induced platelet stimulation, dimeric pleckstrin translocates to the plasma membrane, is phosphorylated and then monomerizes. A recent study found that pleckstrin null platelets from a knockout mouse have a defect in granule secretion, actin polymerization and aggregation. However, the mechanism of pleckstrin signaling for this function is unknown. Our recent studies have led to the identification of a novel pleckstrin-binding protein, serum deprivation response protein (SDPR), by co-immunoprecipitation, GST-pulldowns and nanospray quadruple time of flight mass spectrometry. We show that this interaction occurs directly through N-terminal sequences of pleckstrin. Both pleckstrin and SDPR are phosphorylated by protein kinase C (PKC), but the interaction between pleckstrin and SDPR was shown to be independent of PKC inhibition or activation. These results suggest that SDPR may facilitate the translocation of nonphosphorylated pleckstrin to the plasma membrane in conjunction with phosphoinositides that bind to the C-terminal PH domain. After binding of pleckstrin to the plasma membrane, its phosphorylation by PKC exerts downstream effects on platelet aggregation/secretion.
Resumo:
Bacterial meningitis is characterized by an inflammation of the meninges and continues to be an important cause of mortality and morbidity. Meningeal cells cover the cerebral surface and are involved in the first interaction between pathogens and the brain. Little is known about the role of meningeal cells and the expression of antimicrobial peptides in the innate immune system. In this study we characterized the expression, secretion and bactericidal properties of rat cathelin-related antimicrobial peptide (rCRAMP), a homologue of the human LL-37, in rat meningeal cells after incubation with different bacterial supernatants and the bacterial cell wall components lipopolysaccharide (LPS) and peptidoglycan (PGN). Using an agar diffusion test, we observed that supernatants from meningeal cells incubated with bacterial supernatants, LPS and PGN showed signs of antimicrobial activity. The inhibition of rCRAMP expression using siRNA reduced the antimicrobial activity of the cell culture supernatants. The expression of rCRAMP in rat meningeal cells involved various signal transduction pathways and was induced by the inflammatory cytokines interleukin-1, -6 and tumor necrosis factor alpha. In an experimental model of meningitis, infant rats were intracisternally infected with Streptococcus pneumoniae and rCRAMP was localized in meningeal cells using immunohistochemistry. These results suggest that cathelicidins produced by meningeal cells play an important part in the innate immune response against pathogens in CNS bacterial infections.
Resumo:
Background: Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTH-rP) are two potent hypercalcemic hormones that act on the same targets. Autonomous secretion of the former is involved in primary hyperparathyroidism (PHPT), whereas the latter is responsible for humoral hypercalcemia of malignancy (HHM). Methods: From 250 consecutive, hypercalcemic serum samples sent to our laboratory for assessment of intact PTH, we were able to obtain clinical information, as well as an additional plasma sample for PTH-rP measurement, in 134 patients. At the time of sampling, patients could be classified into seven groups: cancer without known bone metastases (CaNoMeta, n=36), cancer with bone metastases (CaMeta, n=9), no evidence of cancer (noEvCa, n=71), sarcoidosis (Sarc, n=3), end-stage renal disease (ESRD, n=12), vitamin D overdose (VIT-D, n=2), and hyperthyroidism (Thyr, n=1). Results: In the CaNoMeta group, 29/36 patients had elevated PTH-rP levels, 9/36 patients had inappropriately elevated PTH levels, and 5/36 had elevated levels of both hormones. In the CaMeta group, three of the nine patients had inappropriately elevated PTH levels, two of them with concomitantly elevated PTH-rP levels. In the NoEvCa group, 63/71 patients had an inappropriate elevation of PTH levels and were diagnosed as having PHPT. Four of the 71 patients had elevated levels of both PTH and PTH-rP; three of them were in poor health and died within a short period of time. All of the ESRD patients had very high PTH and normal PTH-rP levels, except for one woman with high PTH-rP and undetectable PTH levels; she died from what later turned out to be a recurrent bladder carcinoma. In the Sarc, Vit-D, and Thyr groups, both PTH and PTH-rP levels were normal. Conclusions: (1) Elevated PTH-rP levels are a common finding in cancer patients without bone metastases. Intact PTH, however, should always be measured in hypercalcemic patients with malignancy because concurrent primary hyperparathyroidism is not rare. (2) Primary hyperparathyroidism accounts for hypercalcemia in 90% of patients without evidence of cancer whose PTH-rP levels may also be found to be elevated in a few cases, even some with surgically demonstrated parathyroid adenoma.
Resumo:
Recent studies have indicated that parathyroid hormone-related protein (PTHrP) may have important actions in lactation, affecting the mammary gland, and also calcium metabolism in the newborn and the mother. However, there are as yet no longitudinal studies to support the notion of an endocrine role of this peptide during nursing. We studied a group of 12 nursing mothers, mean age 32 years, after they had been nursing for an average of 7 weeks (B) and also 4 months after stopping nursing (A). It was assumed that changes occurring between A and B correspond to the effect of lactation. Blood was assayed for prolactin (PRL), PTHrP (two-site immunoradiometric assay with sheep antibody against PTHrP(1-40), and goat antibody against PTHrP(60-72), detection limit 0.3 pmol/l), intact PTH (iPTH), ionized calcium (Ca2+), 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), alkaline phosphatase (alkP), as well as for creatinine (Cr), protein, phosphorus (P), and total calcium (Ca). Fasting 2-h urine samples were analyzed for Ca excretion (CaE) and renal phosphate threshold (TmP/GFR). PRL was significantly higher during lactation than after weaning (39 +/- 10 vs. 13 +/- 9 micrograms/l; p = 0.018) and so was PTHrP (2.8 +/- 0.35 vs. 0.52 +/- 0.04 pmol/l; p = 0.002), values during lactation being above the normal limit (1.3 pmol/l) in all 12 mothers. There was a significant correlation between PRL and PTHrP during lactation (r = 0.8, p = 0.002). Whole blood Ca2+ did not significantly change from A (1.20 +/- 0.02 mmol/l) to B (1.22 +/- 0.02, mmol/l), whereas total Ca corrected for protein (2.18 +/- 0.02 mmol/l) or uncorrected (2.18 +/- 0.02 mmol/l) significantly rose during lactation (2.31 +/- 0.02 mmol/l, p = 0.003 and 2.37 +/- 0.03 mmol/l, p = 0.002, respectively). Conversely, iPTH decreased during lactation (3.47 +/- 0.38 vs. 2.11 +/- 0.35 pmol/l, A vs. B, p = 0.02). Serum-levels of 25(OH)D3 and 1,25(OH)2D3 did not significantly change from A to B (23 +/- 2.3 vs. 24 +/- 1.9 ng/ml and 29.5 +/- 6.0 vs. 21.9 +/- 1.8 pg/ml, respectively). Both TmP/GFR and P were higher during lactation than after weaning (1.15 +/- 0.03 vs. 0.86 +/- 0.05 mmol/l GF, p = 0.003 and 1.25 +/- 0.03 vs. 0.96 +/- 0.05 mmol/l, p = 0.002, respectively) as was alkP (74.0 +/- 7.1 vs. 52.6 +/- 6.9 U/l, p = 0.003). CaE did not differ between A and B (0.015 +/- 0.003 vs. 0.017 +/- 0.003 mmol/l GF, A vs. B, NS). We conclude that lactation is accompanied by an increase in serum PRL. This is associated with a release of PTHrP into the maternal blood circulation. A rise in total plasma Ca ensues, probably in part by increased bone turnover as suggested by the elevation of alkP. PTH secretion falls, with a subsequent rise of TmP/GFR and plasma P despite high plasma levels of PTHrP.
Expression Analysis of the Theileria parva Subtelomere-Encoded Variable Secreted Protein Gene Family
Resumo:
Background The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs) form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. Methodology/Principal Findings We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. Conclusions Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic proteins.
Resumo:
Pasteurella aerogenes is known as a commensal bacterium or as an opportunistic pathogen, as well as a primary pathogen found to be involved in abortion cases of humans, swine, and other mammals. Using broad-range DNA probes for bacterial RTX toxin genes, we cloned and subsequently sequenced a new operon named paxCABD encoding the RTX toxin PaxA in P. aerogenes. The pax operon is organized analogous to the classical RTX operons containing the activator gene paxC upstream of the structural toxin gene paxA, which is followed by the secretion protein genes paxB and paxD. The highest sequence similarity of paxA with known RTX toxin genes is found with apxIIIA (82%). PaxA is structurally similar to ApxIIIA and also shows functional analogy to ApxIIIA, since it shows cohemolytic activity with the sphingomyelinase of Staphylococcus aureus, known as the CAMP effect, but is devoid of direct hemolytic activity. In addition, it shows to some extent immunological cross-reactions with ApxIIIA. P. aerogenes isolated from various specimens showed that the pax operon was present in about one-third of the strains. All of the pax-positive strains were specifically related to swine abortion cases or septicemia of newborn piglets. These strains were also shown to produce the PaxA toxin as determined by the CAMP phenomenon, whereas none of the pax-negative strains did. This indicated that the PaxA toxin is involved in the pathogenic potential of P. aerogenes. The examined P. aerogenes isolates were phylogenetically analyzed by 16S rRNA gene (rrs) sequencing in order to confirm their species. Only a small heterogeneity (<0.5%) was observed between the rrs genes of the strains originating from geographically distant farms and isolated at different times.
Resumo:
Aeromonas salmonicida subsp. salmonicida is the etiologic agent of furunculosis, a frequent and significant disease of fisheries worldwide. The disease is largely controlled by commercial oil adjuvanted vaccines containing bacterins. However, the mechanisms leading to a protective immune response remain poorly understood. The type-three secretion system (T3SS) plays a central role in virulence of A. salmonicida subsp. salmonicida and thus may have an influence on the immune response of the host. The aim of this study was to evaluate the role of the T3SS antigens in mounting a protective immune response against furunculosis. Rainbow trout were intraperitoneally vaccinated in two independent experiments with bacterins prepared from a wild-type A. salmonicida strain and an isogenic strain carrying a deletion in the T3SS (ΔascV). Fish were challenged with the wt strain eight weeks after vaccination. In both trials, the survival rate of trout vaccinated with the ΔascV strain was significantly higher (23-28%) in comparison to the group vaccinated with the wt strain. High-throughput proteomics analysis of whole bacteria showed the ascV deletion in the mutant strain resulted in lower expression of all the components of the T3SS, several of which have a potential immunosuppressive activity. In a third experiment, fish were vaccinated with recombinant AcrV (homologous to the protective antigen LcrV of Yersinia) or S-layer protein VapA (control). AcrV vaccinated fish were not protected against a challenge while fish vaccinated with VapA were partially protected. The presence of T3SS proteins in the vaccine preparations decreased the level of protection against A. salmonicida infection and that AcrV was not a protective antigen. These results challenge the hypothesis that mounting specific antibodies against T3SS proteins should bring better protection to fish and demonstrate that further investigations are needed to better understand the mechanisms underlying effective immune responses against A. salmonicida infection.
Resumo:
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.
Resumo:
Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.