39 resultados para BaTiO(3) and titanates
Resumo:
Cerebral malaria (CM) is associated with high mortality and morbidity as a certain percentage of survivors suffers from persistent neurological sequelae. The mechanisms leading to death and functional impairments are yet not fully understood. This study investigated biochemical and morphological markers of apoptosis in the brains of mice infected with Plasmodium berghei ANKA. Cleaved caspase-3 was detected in the brains of animals with clinical signs of CM and immunoreactivity directly correlated with the clinical severity of the disease. Caudal parts of the brain showed more intense immunoreactivity for cleaved caspase-3. Double-labelling experiments revealed processing of caspase-3 primarily in neurons and oligodendrocytes. These cells also exhibited apoptotic-like morphological profiles in ultrastructural analysis. Further, cleavage of caspase-3 was found in endothelial cells. In contrast to neurons and oligodendrocytes, apoptosis of endothelial cells already occurred in early stages of the disease. Our results are the first to demonstrate processing of caspase-3 in different central nervous system cells of animals with CM. Apoptosis of endothelial cells may represent a critical issue for the development of the disease in the mouse model. Neurological signs and symptoms might be attributable, at least in part, to apoptotic degeneration of neurons and glia in advanced stages of murine CM.
Resumo:
Fgfrl1 (also known as Fgfr5; OMIM 605830) homozygous null mice have thin, amuscular diaphragms and die at birth because of diaphragm hypoplasia. FGFRL1 is located at 4p16.3, and this chromosome region can be deleted in patients with congenital diaphragmatic hernia (CDH). We examined FGFRL1 as a candidate gene for the diaphragmatic defects associated with 4p16.3 deletions and re-sequenced this gene in 54 patients with CDH. We confirmed six known coding single nucleotide polymorphisms (SNPs): c.209G > A (p.Pro20Pro), c.977G > A (p.Pro276Pro), c.1040T > C (p.Asp297Asp), c.1234C > A (p.Pro362Gln), c.1420G > T (p.Arg424Leu), and c.1540C > T (p.Pro464Leu), but we did not identify any gene mutations. We genotyped additional CDH patients for four of these six SNPs, including the three non-synonymous SNPs, to make a total of 200 chromosomes, and found that the allele frequency for the four SNPs, did not differ significantly between patients and normal controls (p > or = 0.05). We then used Affymetrix Genechip Mouse Gene 1.0 ST arrays and found eight genes with significantly reduced expression levels in the diaphragms of Fgfrl1 homozygous null mice when compared with wildtype mice-Tpm3, Fgfrl1 (p = 0.004), Myl2, Lrtm1, Myh4, Myl3, Myh7 and Hephl1. Lrtm1 is closely related to Slit3, a protein associated with herniation of the central tendon of the diaphragm in mice. The Slit proteins are known to regulate axon branching and cell migration, and inhibition of Slit3 reduces cell motility and decreases the expression of Rac and Cdc42, two genes that are essential for myoblast fusion. Further studies to determine if Lrtm1 has a similar function to Slit3 and if reduced Fgfrl1 expression can cause diaphragm hypoplasia through a mechanism involving decreased myoblast motility and/or myoblast fusion, seem indicated.
Resumo:
The progression of liver fibrosis in chronic hepatitis C has long been considered to be independent from viral genotypes. However, recent studies suggest an association between Hepatitis C virus (HCV) genotype 3 and accelerated liver disease progression. We completed a systematic review and meta-analysis of studies evaluating the association between HCV genotypes and fibrosis progression. PubMed, Embase and ISI Web of Knowledge databases were searched for cohort, cross-sectional and case-control studies on treatment-naïve HCV-infected adults in which liver fibrosis progression rate (FPR) was assessed by the ratio of fibrosis stage in one single biopsy to the duration of infection (single-biopsy studies) or from the change in fibrosis stage between two biopsies (paired biopsies studies). A random effect model was used to derive FPR among different HCV genotypes. Eight single-biopsy studies (3182 patients, mean/median duration of infection ranging from 9 to 21 years) and eight paired biopsies studies (mean interval between biopsies 2-12 years) met the selection criteria. The odds ratio for the association of genotype 3 with accelerated fibrosis progression was 1.52 (95% CI 1.12-2.07, P = 0.007) in single-biopsy studies and 1.37 (95% CI 0.87-2.17, P = 0.17) in paired biopsy studies. In conclusion, viral genotype 3 was associated with faster fibrosis progression in single-biopsy studies. This observation may have important consequences on the clinical management of genotype 3-infected patients. The association was not significant in paired biopsies studies, although the latter may be limited by important indication bias, short observation time and small sample size.
Resumo:
Limitations in the use of autologous bone graft, which is the gold standard therapy in bone defect healing, drive the search for alternative treatments. In this study the influence of rhTGFbeta-3 on mechanical and radiological parameters of a healing bone defect in the sheep tibia was assessed. In the sheep, an 18-mm long osteoperiosteal defect in the tibia was treated by rhTGFbeta-3 seeded on a poly(L/DL-lactide) carrier (n = 4). In a second group (n = 4), the defect was treated by the carrier only, in a third group (n = 4) by autologous cancellous bone graft, and in a fourth group (n = 2) the defect remained blank. The healing process of the defect was assessed by weekly in vivo stiffness measurements and radiology as well as by quantitative computed tomographic assessment of bone mineral density (BMD) every 4 weeks. The duration of the experiment was 12 weeks under loading conditions. In the bone graft group, a marginally significant higher increase in stiffness was observed than in the PLA/rhTGFbeta-3 group (p = 0.06) and a significantly higher increase than in the PLA-only group (p = 0.03). The radiographic as well as the computed tomographic evaluation yielded significant differences between the groups (p = 0.03), indicating the bone graft treatment (bone/per area, 83%; BMD, 0.57 g/cm(3)) performing better than the PLA/rhTGFbeta-3 (38%; 0.23 g/cm(3)) and the PLA-only treatment (2.5%; 0.09 g/cm(3)), respectively. Regarding the mechanical and radiological parameters assessed in this study, we conclude that rhTGFbeta-3 has a promoting effect on bone regeneration. However, under the conditions of this study, this effect does not reach the potential of autologous cancellous bone graft transplantation.
Resumo:
Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.
Resumo:
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations.
Resumo:
GOALS The aim of this report is to delineate the clinical, pathologic, and enteroendocrine (EE) features of prohormone convertase 1/3 (PC1/3) deficiency in children. BACKGROUND Prohormone convertases play a pivotal role in the activation of biologically inactive hormones. Congenital defects in the EE axis, such as PC1/3 deficiency, have been rarely reported and their pathophysiological mechanisms are largely unknown. STUDY EE function and pathology was evaluated in 4 males (1, 2, 7, and 10 y old) from 2 families with PC1/3 deficiency at a university children's hospital. Clinical course, pathology analysis including immunohistochemistry for PC1/3, PC2, and glucagon-like peptide 1 (GLP-1) and electron microscopy, as well as EE function tests (GLP-1, GLP-2, oral glucose tolerance test) were performed. RESULTS All (n=4) suffered from congenital severe diarrhea associated with malabsorption. The diarrhea improved during the first year of life and hyperphagia with excessive weight gain (BMI>97th percentile) became the predominant phenotype at an older age. Analysis of the enteroendocrine axis revealed high proinsulin levels (57 to 1116 pmol/L) in all patients, low serum GLP-2 levels, and impaired insulin and GLP-1 secretion after an oral glucose tolerance test at a young age, with improvement in 1 older child tested. Electron microscopy showed normal ultrastructure of enterocytes and EE cells. Immunohistochemistry revealed normal expression of chromogranin A, a marker of EE cells but markedly reduced immunostaining for PC1/3 and PC2 in all patients. CONCLUSIONS PC1/3 deficiency is associated with an age dependent, variable clinical phenotype caused by severe abnormalities in intestinal and EE functions. Serum level of proinsulin can be used as an effective screening tool.
Resumo:
INTRODUCTION The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. METHODS Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. RESULTS There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. CONCLUSIONS The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis.
Resumo:
We have analysed the extent of base-pairing interactions between spacer sequences of histone pre-mRNA and U7 snRNA present in the trans-acting U7 snRNP and their importance for histone RNA 3' end processing in vitro. For the efficiently processed mouse H4-12 gene, a computer analysis revealed that additional base pairs could be formed with U7 RNA outside of the previously recognised spacer element (stem II). One complementarity (stem III) is located more 3' and involves nucleotides from the very 5' end of U7 RNA. The other, more 5' located complementarity (stem I) involves nucleotides of the Sm binding site of U7 RNA, a part known to interact with snRNP structural proteins. These potential stem structures are separated from each other by short internal loops of unpaired nucleotides. Mutational analyses of the pre-mRNA indicate that stems II and III are equally important for interaction with the U7 snRNP and for processing, whereas mutations in stem I have moderate effects on processing efficiency, but do not impair complex formation with the U7 snRNP. Thus nucleotides near the processing site may be important for processing, but do not contribute to the assembly of an active complex by forming a stem I structure. The importance of stem III was confirmed by the ability of a complementary mutation in U7 RNA to suppress a stem III mutation in a complementation assay using Xenopus laevis oocytes. The main role of the factor(s) binding to the upstream hairpin loop is to stabilise the U7-pre-mRNA complex. This was shown by either stabilising (by mutation) or destabilising (by increased temperature) the U7-pre-mRNA base-pairing under conditions where hairpin factor binding was either allowed or prevented (by mutation or competition). The hairpin dependence of processing was found to be inversely related to the strength of the U7-pre-mRNA interaction.