90 resultados para Azores Triple Junction
Resumo:
Human HeLa cells expressing mouse connexin30 were used to study the electrical properties of gap junction channel substates. Experiments were performed on cell pairs using a dual voltage-clamp method. Single-channel currents revealed discrete levels attributable to a main state, a residual state, and five substates interposed, suggesting the operation of six subgates provided by the six connexins of a gap junction hemichannel. Substate conductances, gamma(j,substate), were unevenly distributed between the main-state and the residual-state conductance (gamma(j,main state) = 141 pS, gamma(j,residual state) = 21 pS). Activation of the first subgate reduced the channel conductance by approximately 30%, and activation of subsequent subgates resulted in conductance decrements of 10-15% each. Current transitions between the states were fast (<2 ms). Substate events were usually demarcated by transitions from and back to the main state; transitions among substates were rare. Hence, subgates are recruited simultaneously rather than sequentially. The incidence of substate events was larger at larger gradients of V(j). Frequency and duration of substate events increased with increasing number of synchronously activated subgates. Our mathematical model, which describes the operation of gap junction channels, was expanded to include channel substates. Based on the established V(j)-sensitivity of gamma(j,main state) and gamma(j,residual state), the simulation yielded unique functions gamma(j,substate) = f(V(j)) for each substate. Hence, the spacing of subconductance levels between the channel main state and residual state were uneven and characteristic for each V(j).
Pitfalls when examining gap junction hemichannels: interference from volume-regulated anion channels
Resumo:
Human HeLa cells transfected with mouse connexin45 were used to explore the experimental conditions suitable to measure currents carried by gap junction hemichannels. Experiments were performed with a voltage-clamp technique and whole-cell recording. Lowering [Ca(2+)](o) from 2 mM to 20 nM evoked an extra current, I (m), putatively carried by Cx45 hemichannels. However, the variability of I (m) (size, voltage sensitivity, kinetics) suggested the involvement of other channels. The finding that growth medium in the incubator increased the osmolarity with time implied that volume-regulated anion channels (VRAC) may participate. This assumption was reinforced by the following observations. On the one hand, keeping [Ca(2+)](o) normal while the osmolarity of the extracellular solution was reduced from 310 to 290 mOsm yielded a current characteristic of VRAC; I (VRAC) activated/deactivated at negative/positive voltage, giving rise to the conductance functions g (VRAC,inst)=f(V (m)) (inst: instantaneous; V (m): membrane potential) and g (VRAC,ss)=f(V (m)) (ss: steady state). Moreover, it was reversibly inhibited by mibefradil, a Cl(-)channel blocker (binding constant K (d)=38 microM, Hill coefficient n=12), but not by the gap junction channel blocker 18alpha-glycyrrhetinic acid. On the other hand, minimizing the osmotic imbalance while [Ca(2+)](o) was reduced led to a current typical for Cx45 hemichannels; I (hc) activated/deactivated at positive/negative voltage. Furthermore, it was reversibly inhibited by 18alpha-glycyrrhetinic acid or palmitoleic acid, but not by mibefradil. Computations based on g (VRAC,ss)=f(V (m)) and g (hc,ss)=f(V (m)) indicated that the concomitant operation of both currents results in a bell-shaped conductance-voltage relationship. The functional implications of the data presented are discussed. Conceivably, VRAC and hemichannels are involved in a common signaling pathway.
Resumo:
Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.
Resumo:
BACKGROUND AND PURPOSE: Little is known about the incidence and treatment of ureteropelvic junction (UPJ) obstruction of renal grafts. We report on three cases treated by endopyelotomy. PATIENTS AND METHODS: Graft function declined in three patients 98, 135, and 144 days after kidney transplantation. Acute rejection was excluded by renal biopsy. Ultrasonography revealed a dilated collecting system, and a percutaneous nephrostomy tube was placed. An antegrade nephrostogram showed UPJ obstruction. Percutaneous antegrade endopyelotomy was performed with the cold-knife technique, and the area was stented for 6 weeks using a 14F/8.2F Smith endopyelotomy stent. RESULTS: No intraoperative or postoperative complications occurred. The endopyelotomies were successful, and the creatinine clearances returned to normal. CONCLUSION: Antegrade endopyelotomy in patients with UPJ obstruction of a renal graft is feasible and effective. Normal kidney function was restored after correction of the obstruction.
Resumo:
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from cell lysates of transfected COS-7 cells and of endothelial cells. Co-precipitation of VE-cadherin and VE-PTP required the most membrane-proximal extracellular domains of each protein. Expression of VE-PTP in triple-transfected COS-7 cells and in CHO cells reversed the tyrosine phosphorylation of VE-cadherin elicited by vascular endothelial growth factor receptor 2 (VEGFR-2). Expression of VE-PTP under an inducible promotor in CHO cells transfected with VE-cadherin and VEGFR-2 increased the VE-cadherin-mediated barrier integrity of a cellular monolayer. Surprisingly, a catalytically inactive mutant form of VE-PTP had the same effect on VE-cadherin phosphorylation and cell layer permeability. Thus, VE-PTP is a transmembrane binding partner of VE-cadherin that associates through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin and cell layer permeability independently of its enzymatic activity.
Resumo:
The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.
Resumo:
Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.
Resumo:
BACKGROUND: Spontaneous cervicocephalic artery dissection (sCAD) of more than two cervical arteries is rare. PATIENTS AND METHODS: Vascular and potential sCAD risk factors, triggering events, clinical and neuroimaging findings, and outcome of patients with multiple sCAD were studied. Patients were drawn from prospective hospital-based sCAD registries. RESULTS: Of 740 consecutive patients with sCAD, 11 (1.5%) had three, and one had four (0.1%) sCAD. Eight of these 12 patients were women. One patient had additional dissections of the celiac trunk and hepatic artery. Vascular risk factors included hypertension (n = 1), hypercholesterolaemia (n = 6), current smoking (n = 5) and migraine (n = 6). No patient had a family history of sCAD, fibromuscular dysplasia (FMD) or connective tissue disease. SCAD was preceded by a minor trauma in five and infection in four patients. Clinical manifestations included ischaemic stroke (n = 8), transient ischaemic attack (n = 3), headache (n = 9), neck pain (n = 4), Horner syndrome (n = 5), pulsatile tinnitus (n = 2) and dysgeusia (n = 1). Brain MRI revealed ischaemic infarcts that affected one vessel territory in seven and two territories in two patients. The 3-month outcome was favourable (modified Rankin scale score 0-1) in 10 patients (83%). No new recurrent stroke or sCAD occurred during a mean follow-up of 50 (SD 29) months. CONCLUSION: Multiple sCAD occurred preferentially in women and caused clinical symptoms and signs mainly in one vascular territory. In none of the patients was FMD or any other underlying arteriopathy apparent. The majority of multiple sCAD was preceded by a minor trauma or infection. Clinical outcome was favourable in most patients, and long-term prognosis benign. The data suggest that transient vasculopathy may be a major mechanism for multiple sCAD.
Resumo:
Motor-evoked potentials (MEPs) vary in size from one stimulus to the next. The objective of this study was to determine the cause and source of trial-to-trial MEP size variability. In two experiments involving 10 and 14 subjects, the variability of MEPs to cortical stimulation (cortical-MEPs) in abductor digiti minimi (ADM) and abductor hallucis (AH) was compared to those responses obtained using the triple stimulation technique (cortical-TST). The TST eliminates the effects of motor neuron (MN) response desynchronization and of repetitive MN discharges. Submaximal stimuli were used in both techniques. In six subjects, cortical-MEP variability was compared to that of brainstem-MEP and brainstem-TST. Variability was greater for MEPs than that for TST responses, by approximately one-third. The variability was the same for cortical- and brainstem-MEPs and was similar in ADM and AH. Variability concerned at least 10-15% of the MN pool innervating the target muscle. With the stimulation parameters used, repetitive MN discharges did not influence variability. For submaximal stimuli, approximately two-third of the observed MEP size variability is caused by the variable number of recruited alpha-MNs and approximately one-third by changing synchronization of MN discharges. The source of variability is most likely localized at the spinal segmental level.