33 resultados para Attitudes, Persuasion, Confidence, Voice, Elaboration Likelihood Model
Resumo:
The updated Vienna Prediction Model for estimating recurrence risk after an unprovoked venous thromboembolism (VTE) has been developed to identify individuals at low risk for VTE recurrence in whom anticoagulation (AC) therapy may be stopped after 3 months. We externally validated the accuracy of the model to predict recurrent VTE in a prospective multicenter cohort of 156 patients aged ≥65 years with acute symptomatic unprovoked VTE who had received 3 to 12 months of AC. Patients with a predicted 12-month risk within the lowest quartile based on the updated Vienna Prediction Model were classified as low risk. The risk of recurrent VTE did not differ between low- vs higher-risk patients at 12 months (13% vs 10%; P = .77) and 24 months (15% vs 17%; P = 1.0). The area under the receiver operating characteristic curve for predicting VTE recurrence was 0.39 (95% confidence interval [CI], 0.25-0.52) at 12 months and 0.43 (95% CI, 0.31-0.54) at 24 months. In conclusion, in elderly patients with unprovoked VTE who have stopped AC, the updated Vienna Prediction Model does not discriminate between patients who develop recurrent VTE and those who do not. This study was registered at www.clinicaltrials.gov as #NCT00973596.
Resumo:
BACKGROUND Predicting long-term survival after admission to hospital is helpful for clinical, administrative and research purposes. The Hospital-patient One-year Mortality Risk (HOMR) model was derived and internally validated to predict the risk of death within 1 year after admission. We conducted an external validation of the model in a large multicentre study. METHODS We used administrative data for all nonpsychiatric admissions of adult patients to hospitals in the provinces of Ontario (2003-2010) and Alberta (2011-2012), and to the Brigham and Women's Hospital in Boston (2010-2012) to calculate each patient's HOMR score at admission. The HOMR score is based on a set of parameters that captures patient demographics, health burden and severity of acute illness. We determined patient status (alive or dead) 1 year after admission using population-based registries. RESULTS The 3 validation cohorts (n = 2,862,996 in Ontario, 210 595 in Alberta and 66,683 in Boston) were distinct from each other and from the derivation cohort. The overall risk of death within 1 year after admission was 8.7% (95% confidence interval [CI] 8.7% to 8.8%). The HOMR score was strongly and significantly associated with risk of death in all populations and was highly discriminative, with a C statistic ranging from 0.89 (95% CI 0.87 to 0.91) to 0.92 (95% CI 0.91 to 0.92). Observed and expected outcome risks were similar (median absolute difference in percent dying in 1 yr 0.3%, interquartile range 0.05%-2.5%). INTERPRETATION The HOMR score, calculated using routinely collected administrative data, accurately predicted the risk of death among adult patients within 1 year after admission to hospital for nonpsychiatric indications. Similar performance was seen when the score was used in geographically and temporally diverse populations. The HOMR model can be used for risk adjustment in analyses of health administrative data to predict long-term survival among hospital patients.
Resumo:
Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and level of confidence in an AOP, methodologies and tools are still being formalized. The Organization for Economic Co-operation and Development (OECD) Users' Handbook Supplement to the Guidance Document for Developing and Assessing AOPs (OECD 2014a; hereafter referred to as the OECD AOP Handbook) provides tailored Bradford-Hill (BH) considerations for systematic assessment of confidence in a given AOP. These considerations include (1) biological plausibility and (2) empirical support (dose-response, temporality, and incidence) for Key Event Relationships (KERs), and (3) essentiality of key events (KEs). Here, we test the application of these tailored BH considerations and the guidance outlined in the OECD AOP Handbook using a number of case examples to increase experience in more transparently documenting rationales for assigned levels of confidence to KEs and KERs, and to promote consistency in evaluation within and across AOPs. The major lessons learned from experience are documented, and taken together with the case examples, should contribute to better common understanding of the nature and form of documentation required to increase confidence in the application of AOPs for specific uses. Based on the tailored BH considerations and defining questions, a prototype quantitative model for assessing the WoE of an AOP using tools of multi-criteria decision analysis (MCDA) is described. The applicability of the approach is also demonstrated using the case example aromatase inhibition leading to reproductive dysfunction in fish. Following the acquisition of additional experience in the development and assessment of AOPs, further refinement of parameterization of the model through expert elicitation is recommended. Overall, the application of quantitative WoE approaches hold promise to enhance the rigor, transparency and reproducibility for AOP WoE determinations and may play an important role in delineating areas where research would have the greatest impact on improving the overall confidence in the AOP.