62 resultados para Artéria umbilical
Resumo:
Umbilical cord blood (UCB) is a source of hematopoietic stem cells that initially was used exclusively for the hematopoietic reconstitution of pediatric patients. It is now suggested for use for adults as well, a fact that increases the pressure to obtain units with high cellularity. Therefore, the optimization of UCB processing is a priority.
Resumo:
Background Vasopressin is one of the most important physiological stress and shock hormones. Copeptin, a stable vasopressin precursor, is a promising sepsis marker in adults. In contrast, its involvement in neonatal diseases remains unknown. The aim of this study was to establish copeptin concentrations in neonates of different stress states such as sepsis, chorioamnionitis and asphyxia. Methods Copeptin cord blood concentration was determined using the BRAHMS kryptor assay. Neonates with early-onset sepsis (EOS, n = 30), chorioamnionitis (n = 33) and asphyxia (n = 25) were compared to a control group of preterm and term (n = 155) neonates. Results Median copeptin concentration in cord blood was 36 pmol/l ranging from undetectable to 5498 pmol/l (IQR 7 - 419). Copeptin cord blood concentrations were non-normally distributed and increased with gestational age (p < 0.0001). Neonates born after vaginal compared to cesarean delivery had elevated copeptin levels (p < 0.0001). Copeptin correlated strongly with umbilical artery pH (Spearman's Rho -0.50, p < 0.0001), umbilical artery base excess (Rho -0.67, p < 0.0001) and with lactate at NICU admission (Rho 0.54, p < 0.0001). No difference was found when comparing copeptin cord blood concentrations between neonates with EOS and controls (multivariate p = 0.30). The highest copeptin concentrations were found in neonates with asphyxia (median 993 pmol/l). Receiver-operating-characteristic curve analysis showed that copeptin cord blood concentrations were strongly associated with asphyxia: the area under the curve resulted at 0.91 (95%-CI 0.87-0.96, p < 0.0001). A cut-off of 400 pmol/l had a sensitivity of 92% and a specifity of 82% for asphyxia as defined in this study. Conclusions Copeptin concentrations were strongly related to factors associated with perinatal stress such as birth acidosis, asphyxia and vaginal delivery. In contrast, copeptin appears to be unsuitable for the diagnosis of EOS.
Resumo:
A 2-year-old Red Holstein cow was presented with uterine torsion at 235 days of pregnancy. The fetus extracted by cesarean section had weak vital signs and marked abdominal distention. An edematous pouch that contained tubular structures with peristaltic activity was associated with the umbilical cord. Because of poor prognosis, both dam and fetus were euthanized. At necropsy, the fetus had severe distention of the forestomachs, abomasum, and proximal small intestine; absence of distal small intestine, cecum, and proximal colon; atresia of the 2 blind ends of the intestine; and atrophy of distal colon and rectum. The tubular structures associated with the umbilical cord were identified as the segments of intestine that were absent in the fetus. Intestinal atresia combined with ectopia may be caused by local ischemia during temporary herniation and rotation of the fetal gut into the extraembryonic coelom. The close connection between ectopic intestine and amniotic sheath of the umbilical cord in this case may have facilitated vascularization and allowed development and viability of the ectopic intestine.
Resumo:
This study investigates the influence of 17β-estradiol (E2) on nitric oxide (NO) production in endothelial cell cultures and the effect of topical E2 on the survival of skin flap transplants in a rat model. Human umbilical vein endothelial cells were treated with three different E2 concentrations and nitrite (NO2) concentrations, as well as endothelial nitric oxide synthase (eNOS) protein expressions were analyzed. In vivo, random-pattern skin flaps were raised in female Wistar rats 14 days following ovariectomy and treated with placebo ointment (group 1), E2 as gel (group 2), and E2 via plaster (group 3). Flap perfusion, survival, and NO2 levels were measured on postoperative day 7. In vitro, E2 treatment increased NO2 concentration in cell supernatant and eNOS expression in cell lysates (p < 0.05). In vivo, E2 treated (gel and plaster groups) demonstrated significantly increased skin flap survival compared to the placebo group (p < 0.05). E2 plaster-treated animals exhibited higher NO2 blood levels than placebo (p < 0.05) paralleling the in vitro observations. E2 increases NO production in endothelial cells via eNOS activation. Topical E2 application can significantly increase survival of ischemically challenged skin flaps in a rat model and may augment wound healing in other ischemic situations via activation of NO production.
Toxicity of clopidogrel and ticlopidine on human myeloid progenitor cells: importance of metabolites
Resumo:
Ticlopidine and clopidogrel are thienopyridine derivatives used for inhibition of platelet aggregation. Not only hepatotoxicity, but also bone marrow toxicity may limit their use. Aims of the study were to find out whether non-metabolized drug and/or metabolites are responsible for myelotoxicity and whether the inactive clopidogrel metabolite clopidogrel carboxylate contributes to myelotoxicity. We used myeloid progenitor cells isolated from human umbilical cord blood in a colony-forming unit assay to assess cytotoxicity. Degradation of clopidogrel, clopidogrel carboxylate or ticlopidine (studied at 10 and 100 μM) was monitored using LC/MS. Clopidogrel and ticlopidine were both dose-dependently cytotoxic starting at 10 μM. This was not the case for the major clopidogrel metabolite clopidogrel carboxylate. Pre-incubation with recombinant human CYP3A4 not only caused degradation of clopidogrel and ticlopidine, but also increased cytotoxicity. In contrast, clopidogrel carboxylate was not metabolized by recombinant human CYP3A4. Pre-incubation with freshly isolated human granulocytes was not only associated with a myeloperoxidase-dependent degradation of clopidogrel, clopidogrel carboxylate and ticlopidine, but also with dose-dependent cytotoxicity of these compounds starting at 10 μM. In conclusion, both non-metabolized clopidogrel and ticlopidine as well as metabolites of these compounds are toxic towards myeloid progenitor cells. Taking exposure data in humans into account, the myelotoxic element of clopidogrel therapy is likely to be secondary to the formation of metabolites from clopidogrel carboxylate by myeloperoxidase. Concerning ticlopidine, both the parent compound and metabolites formed by myeloperoxidase may be myelotoxic in vivo. The molecular mechanisms of cytotoxicity have to be investigated in further studies.
Resumo:
Intrauterine growth restriction (IUGR) is defined as a condition in which the fetus does not reach its genetically given growth potential, resulting in low birth weight. IUGR is an important cause of perinatal morbidity and mortality, thus contributing substantially to medically indicated preterm birth in order to prevent fetal death. We subjected umbilical cord blood serum samples either belonging to the IUGR group (n = 15) or to the control group (n = 15) to fractionation by affinity chromatography using a bead system with hydrophobic interaction capabilities. So prepared protein mixtures were analyzed by MALDI-TOF mass spectrometric profiling. The six best differentiating ion signals at m/z 8205, m/z 8766, m/z 13 945, m/z 15 129, m/z 15 308, and m/z 16 001 were collectively assigned as IUGR proteome signature. Separation confidence of our IUGR proteome signature reached a sensitivity of 0.87 and a specificity of 0.93. Assignment of ion signals in the mass spectra to specific proteins was substantiated by SDS-PAGE in conjunction with peptide mass fingerprint analysis of cord blood serum proteins. One constituent of this proteome signature, apolipoprotein C-III(0) , a derivative lacking glycosylation, has been found more abundant in the IUGR cord blood serum samples, irrespective of gestational age. Hence, we suggest apolipoprotein C-III(0) as potential key-marker of the here proposed IUGR proteome signature, as it is a very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) member and as such involved in triglyceride metabolism that itself is discussed as being of importance in IUGR pathogenesis. Our results indicate that subtle alterations in protein glycosylation need to be considered for improving our understanding of the pathomechanisms in IUGR.
Resumo:
Endothelial dysfunction precedes hypertension and atherosclerosis and predicts cardiac allograft vasculopathy and death in heart transplant recipients. Endothelial overproduction of reactive oxygen species, such as superoxide anions produced by NAD(P)H oxidase, induces endothelial dysfunction. Because immunosuppressive drugs have been associated with increased reactive oxygen species production and endothelial dysfunction, we sought to elucidate the underlying mechanisms. Reactive oxygen species, release of superoxide anions, and NAD(P)H oxidase activity were studied in human umbilical vein endothelial cells and in polymorphonuclear neutrophils. Gp91ds-tat was used to specifically block NAD(P)H oxidase. Transcriptional activation of different subunits of NAD(P)H oxidase was assessed by real-time RT-PCR. Rac1 subunit translocation and activation were studied by membrane fractionation and pull-down assays. Calcineurin inhibitors significantly increased endothelial superoxide anions production because of NAD(P)H oxidase, whereas mycophenolate acid (MPA) blocked it. MPA also attenuated the respiratory burst induced by neutrophil NAD(P)H oxidase. Because transcriptional activation of NAD(P)H oxidase was not affected, but addition of guanosine restored endothelial superoxide anions formation after MPA treatment, we speculate that the inhibitory effect of MPA was mediated by depletion of cellular guanosine triphosphate content. This prevented activation of Rac1 and, thus, of endothelial NAD(P)H oxidase. Because all heart transplant recipients are at risk for cardiac allograft vasculopathy development, these differential effects of immunosuppressants on endothelial oxidative stress should be considered in the choice of immunosuppressive drugs.
Resumo:
Tissue engineering strategies are gathering clinical momentum in regenerative medicine and are expected to provide excellent opportunities for therapy for difficult-to-treat human pathologies. Being aware of the requirement to produce larger artificial tissue implants for clinical applications, we used microtissues, produced using gravity-enforced self-assembly of monodispersed primary cells, as minimal tissue units to generate scaffold-free vascularized artificial macrotissues in custom-shaped agarose molds. Mouse myoblast, pig and human articular-derived chondrocytes, and human myofibroblast (HMF)-composed microtissues (microm3 scale) were amalgamated to form coherent macrotissue patches (mm3 scale) of a desired shape. Macrotissues, assembled from the human umbilical vein endothelial cell (HUVEC)-coated HMF microtissues, developed a vascular system, which functionally connected to the chicken embryo's vasculature after implantation. The design of scaffold-free vascularized macrotissues is a first step toward the scale-up and production of artificial tissue implants for future tissue engineering initiatives.
Resumo:
Cell-based therapies and tissue engineering initiatives are gathering clinical momentum for next-generation treatment of tissue deficiencies. By using gravity-enforced self-assembly of monodispersed primary cells, we have produced adult and neonatal rat cardiomyocyte-based myocardial microtissues that could optionally be vascularized following coating with human umbilical vein endothelial cells (HUVECs). Within myocardial microtissues, individual cardiomyocytes showed native-like cell shape and structure, and established electrochemical coupling via intercalated disks. This resulted in the coordinated beating of microtissues, which was recorded by means of a multi-electrode complementary metal-oxide-semiconductor microchip. Myocardial microtissues (microm3 scale), coated with HUVECs and cast in a custom-shaped agarose mold, assembled to coherent macrotissues (mm3 scale), characterized by an extensive capillary network with typical vessel ultrastructures. Following implantation into chicken embryos, myocardial microtissues recruited the embryo's capillaries to functionally vascularize the rat-derived tissue implant. Similarly, transplantation of rat myocardial microtissues into the pericardium of adult rats resulted in time-dependent integration of myocardial microtissues and co-alignment of implanted and host cardiomyocytes within 7 days. Myocardial microtissues and custom-shaped macrotissues produced by cellular self-assembly exemplify the potential of artificial tissue implants for regenerative medicine.
Resumo:
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive renal tubular disorder characterized by renal magnesium wasting, hypercalciuria, advanced nephrocalcinosis and progressive renal failure. Mutations in the paracellin-1 (CLDN16) gene have been defined as the underlying genetic defect. The tubular disorders and progression in renal failure are usually resistant to magnesium substitution and hydrochlorothiazide therapy, but hypomagnesemia may improve with advanced renal insufficiency. We present a patient with a homozygous truncating CLDN16 gene mutation (W237X) who had early onset of renal insufficiency despite early diagnosis at 2 months. He also had additional abnormalities including horseshoe kidney, neonatal teeth, atypical face, cardiac abnormalities including coarctation of the aorta associated with atrial and ventricular septal defects, umbilical hernia and hypertrichosis. To the best of our knowledge, this is the youngest case diagnosed as familial hypomagnesemia with hypercalciuria and nephrocalcinosis and the first case having such additional congenital abnormalities independent of the disease itself.
Resumo:
OBJECTIVE: C-reactive protein (CRP) is a marker of systemic inflammation. Recently, it has been shown that CRP is present in amniotic fluid and fetal urine, and that elevated levels are associated with adverse pregnancy outcome. However, the precise source of amniotic fluid CRP, its regulation, and function during pregnancy is still a matter of debate. The present in vivo and in vitro studies were designed to investigate the production of CRP in human placental tissues. MATERIAL AND METHODS: Ten paired blood samples from peripheral maternal vein (MV), umbilical cord artery (UA) and umbilical vein (UV) were collected from women with elective caesarean sections at term. The placental protein accumulation capacity of hCG, hPL, leptin and CRP was compared with the dual in vitro perfusion method of an isolated cotyledon of human term placentae and quantified by ELISA. Values for accumulation (release) were calculated as total accumulation of maternal and fetal circuits normalized for tissue weight and duration of perfusion. For gene expression, RNA was extracted from placental tissue and reverse transcribed. RT-PCR and real-time PCR were performed using specific primers. RESULTS: The median (range) CRP level was significantly different between UA and UV [50.1 ng/ml (12.1-684.6) vs. 61 ng/ml (16.9-708.1)]. The median (range) difference between UV and UA was 9.3 ng/ml (2.2-31.6). A significant correlation was found between MV CRP and both UA and UV CRP levels. Median (range) MV CRP levels [2649 ng/ml (260.1-8299)] were 61.2 (6.5-96.8) fold higher than in the fetus. In vitro, the total accumulation rates (mean+/-SD) were 31+/-13 (mU/g/min, hCG), 1.16+/-0.19 (microg/g/min, hPL), 4.71+/-1.91 (ng/g/min, CRP), and 259+/-118 (pg/g/min, leptin). mRNA for hCG, hPL and leptin was detectable using conventional RT-PCR, while CRP mRNA could only be demonstrated by applying real-time RT-PCR. In the perfused tissue the transcript levels for the four proteins were comparable to those detected in the native control tissue. CONCLUSIONS: Our results demonstrate that the human placenta produces and releases CRP mainly into the maternal circulation similarly to other analyzed placental proteins under in vitro conditions. Further studies are needed to explore the exact role of placental CRP during pregnancy.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate whether there is a relationship between the sonographic fetal thymus size and the presence of an intrauterine infection in patients with preterm labor. STUDY DESIGN: Thirty-one women who had been admitted with preterm labor and intact membranes between 24 and 32 weeks of gestation were included. Fetal thymus perimeter was measured sonographically, and amniocentesis for the microbiologic assessment of the amniotic cavity was performed. Placentas and umbilical cords were examined for the presence of chorioamnionitis/funisitis. RESULTS: The prevalence of preterm delivery and intra-amniotic infection was 51.6% (16/31 women) and 32.3% (10/31 women), respectively. In all cases with intrauterine infection and in 23.8% of cases without intrauterine infection, the fetal thymus perimeter was below the 5th percentile for gestational age (10/10 women vs 5/21 women; P < .01). Isolated histologic chorioamnionitis and funisitis were found in 22.6% and 25.8% of fetuses, respectively. The fetal thymus was below the 5th percentile for gestational age in 100%, 71.4%, and 12.5% of patients with histologic signs of funisitis and isolated chorioamnionitis and without histologic signs of infection, respectively. CONCLUSION: Fetal thymus involution in preterm labor patients is strongly associated with funisitis, which is the histologic manifestation of the fetal inflammatory response syndrome.
Resumo:
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.
Resumo:
FXIII deficiency is known as one of the rarest blood coagulation disorders. In this study, the phenotypic and in part genotypic data of 104 FXIII-deficient patients recorded from 1993 - 2005 are presented. The most common bleeding symptoms were subcutaneous bleeding (57%) followed by delayed umbilical cord bleeding (56%), muscle hematoma (49%), hemorrhage after surgery (40%), hemarthrosis (36%), and intracerebral bleeding (34%). Prophylactic treatment was initiated in about 70% of all patients. FXIII-B subunit-deficient patients had a milder phenotype than patients with FXIII-A subunit deficiency. The most frequent mutation affecting the F13A gene was a splice site mutation in intron 5 (IVS5-1G>A). This mutation was found in eight (17%) of 46 analyzed families. The haplotype analysis of patients carrying the IVS5-1A allele was consistent with a founder effect. The international registry (http://www.f13-database.de) will provide clinicians and scientists working on FXIII deficiency with a helpful tool to improve patient care and direct future studies towards better understanding and treatment of the disease.
Resumo:
BACKGROUND: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema. METHODS: Experiments were performed on human umbilical vein ECs (HUVECs). Oxidative stress was measured by dichlorofluorescein-diacetate. Expression of VE-cadherin was evaluated by immunofluorescent staining and western blot analysis. Endothelial "permeability" was assessed using a transwell model. RESULTS: SRL and ERL, at concentrations of 1, 10 and 100 nmol/liter, enhanced oxidative stress (SRL: 24 +/- 12%, 29 +/- 9%, 41 +/- 13% [p < 0.05, in all three cases]; ERL: 13 +/- 10%, 27 +/- 2%, 40 +/- 12% [p < 0.05, in the latter two cases], respectively) on HUVECs, which was inhibited by the anti-oxidant, N-acetyl-cysteine (NAC) and, to a lesser extent, by the specific inhibitor of nitric oxide synthase, N-Omega-nitro-L-arginine methylester. By the use of NAC, VE-cadherin expression remained comparable with control, according to both immunocytochemistry and western blot analysis. Permeability was significantly increased by SRL and ERL at 100 nmol/liter (29.5 +/- 6.4% and 33.8 +/- 4.2%, respectively); however, co-treatment with NAC abrogated the increased permeability. CONCLUSIONS: EC homeostasis, as indicated by VE-cadherin expression, may be damaged by SRL and ERL, but resolved by the anti-oxidant NAC.