33 resultados para Arabic language--Semantics--Early works to 1800


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND There are concerns about the effects of in utero exposure to antiretroviral drugs (ARVs) on the development of HIV-exposed but uninfected (HEU) children. The aim of this study was to evaluate whether in utero exposure to ARVs is associated with lower birth weight/height and reduced growth during the first 2 years of life. METHODS This cohort study was conducted among HEU infants born between 1996 and 2010 in Tertiary children's hospital in Rio de Janeiro, Brazil. Weight was measured by mechanical scale, and height was measured by measuring board. Z-scores for weight-for-age (WAZ), length-for-age (LAZ) and weight-for-length were calculated. We modeled trajectories by mixed-effects models and adjusted for mother's age, CD4 cell count, viral load, year of birth and family income. RESULTS A total of 588 HEU infants were included of whom 155 (26%) were not exposed to ARVs, 114 (19%) were exposed early (first trimester) and 319 (54%) later. WAZ were lower among infants exposed early compared with infants exposed later: adjusted differences were -0.52 (95% confidence interval [CI]: -0.99 to -0.04, P = 0.02) at birth and -0.22 (95% CI: -0.47 to 0.04, P = 0.10) during follow-up. LAZ were lower during follow-up: -0.35 (95% CI: -0.63 to -0.08, P = 0.01). There were no differences in weight-for-length scores. Z-scores of infants exposed late during pregnancy were similar to unexposed infants. CONCLUSIONS In HEU children, early exposure to ARVs was associated with lower WAZ at birth and lower LAZ up to 2 years of life. Growth of HEU children needs to be monitored closely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software erosion can be controlled by periodically checking for consistency between the de facto architecture and its theoretical counterpart. Studies show that this process is often not automated and that developers still rely heavily on manual reviews, despite the availability of a large number of tools. This is partially due to the high cost involved in setting up and maintaining tool-specific and incompatible test specifications that replicate otherwise documented invariants. To reduce this cost, our approach consists in unifying the functionality provided by existing tools under the umbrella of a common business-readable DSL. By using a declarative language, we are able to write tool-agnostic rules that are simple enough to be understood by non-technical stakeholders and, at the same time, can be interpreted as a rigorous specification for checking architecture conformance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lifespan of plants ranges from a few weeks in annuals to thousands of years in trees. It is hard to explain such extreme longevity considering that DNA replication errors inevitably cause mutations. Without purging through meiotic recombination, the accumulation of somatic mutations will eventually result in mutational meltdown, a phenomenon known as Muller’s ratchet. Nevertheless, the lifespan of trees is limited more often by incidental disease or structural damage than by genetic aging. The key determinants of tree architecture are the axillary meristems, which form in the axils of leaves and grow out to form branches. The number of branches is low in annual plants, but in perennial plants iterative branching can result in thousands of terminal branches. Here, we use stem cell ablation and quantitative cell-lineage analysis to show that axillary meristems are set aside early, analogous to the metazoan germline. While neighboring cells divide vigorously, axillary meristem precursors maintain a quiescent state, with only 7–9 cell divisions occurring between the apical and axillary meristem. During iterative branching, the number of branches increases exponentially, while the number of cell divisions increases linearly. Moreover, computational modeling shows that stem cell arrangement and positioning of axillary meristems distribute somatic mutations around the main shoot, preventing their fixation and maximizing genetic heterogeneity. These features slow down Muller’s ratchet and thereby extend lifespan.