53 resultados para Appearance-based methods
Resumo:
Virus-specific CD4(+) T cells play a major role in viral infections, such as hepatitis C virus (HCV). Viral clearance is associated with vigorous and multi-specific CD4(+) T-cell responses, while chronic infection has been shown to be associated with weak or absent T-cell responses. Most of these studies have used functional assays to analyze virus-specific CD4(+) T-cell responses; however, these and other detection methods have various limitations. Therefore, the important question of whether virus-specific CD4(+) T cells are completely absent or primarily impaired in specific effector functions during chronic infection, has yet to be analyzed in detail. A novel assay, in which virus-specific CD4(+) T-cell frequencies can be determined by de novo CD154 (CD40 ligand) expression in response to viral antigens, can help to overcome some of the limitations of functional assays and restrictions of multimer-based methods. This and other current established methods for the detection of HCV-specific CD4(+) T cells will be discussed in this review.
Resumo:
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.
Resumo:
OBJECTIVES The aim of the present study was to assess human and bacterial peptidylarginine deiminase (PAD) activity in the gingival crevicular fluid (GCF) in the context of serum levels of antibodies against citrullinated epitopes in rheumatoid arthritis and periodontitis. MATERIALS AND METHODS Human PAD and Porphyromonas gingivalis-derived enzyme (PPAD) activities were measured in the GCF of 52 rheumatoid arthritis (RA) patients (48 with periodontitis and 4 without) and 44 non-RA controls (28 with periodontitis and 16 without). Serum antibodies against citrullinated epitopes were measured by ELISA. Bacteria being associated with periodontitis were determined by nucleic-acid-based methods. RESULTS Citrullination was present in 26 (50 %) RA patients and 23 (48 %) controls. PAD and PPAD activities were detected in 36 (69 %) and 30 (58 %) RA patients, respectively, and in 30 (68 %) and 21 (50 %) controls, respectively. PPAD activity was higher in RA and non-RA patients with periodontitis than in those without (p = 0.038; p = 0.004), and was detected in 35 of 59 P. gingivalis-positive samples, and in 16 of 37 P. gingivalis-negative samples in association with high antibody levels against that species. CONCLUSIONS PAD and PPAD activities within the periodontium are elevated in RA and non-RA patients with periodontitis. PPAD secreted by P. gingivalis residing in epithelial cells may exert its citrullinating activity in distant regions of the periodontium or even distant tissues. CLINICAL RELEVANCE In periodontitis, the citrullination of proteins/peptides by human and bacterial peptidylarginine deiminases may generate antibodies after breaching immunotolerance in susceptible individuals.
Resumo:
Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranging and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1.3m for mean accuracy and 2.2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detecting AMR determinants could provide valuable tools for surveillance, epidemiological studies and to inform individual case management. We developed a fast (<1.5 hrs) SYBR-green based real-time PCR method with high resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully-characterized N. gonorrhoeae strains, 19 commensal Neisseria spp., and an additional panel of 193 gonococcal isolates. Results were compared with culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with non-gonococcal Neisseria species and the detection limit was 10(3)-10(4) gDNA copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity 100%, specificity 90%), cefixime (sensitivity 92%, specificity 94%), azithromycin and spectinomycin (both sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations generating resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens but this method can be used to screen collections of gonococcal isolates for AMR more quickly than with current culture-based AMR testing.
Resumo:
Statistical models have been recently introduced in computational orthopaedics to investigate the bone mechanical properties across several populations. A fundamental aspect for the construction of statistical models concerns the establishment of accurate anatomical correspondences among the objects of the training dataset. Various methods have been proposed to solve this problem such as mesh morphing or image registration algorithms. The objective of this study is to compare a mesh-based and an image-based statistical appearance model approaches for the creation of nite element(FE) meshes. A computer tomography (CT) dataset of 157 human left femurs was used for the comparison. For each approach, 30 finite element meshes were generated with the models. The quality of the obtained FE meshes was evaluated in terms of volume, size and shape of the elements. Results showed that the quality of the meshes obtained with the image-based approach was higher than the quality of the mesh-based approach. Future studies are required to evaluate the impact of this finding on the final mechanical simulations.
Resumo:
Statistical appearance models have recently been introduced in bone mechanics to investigate bone geometry and mechanical properties in population studies. The establishment of accurate anatomical correspondences is a critical aspect for the construction of reliable models. Depending on the representation of a bone as an image or a mesh, correspondences are detected using image registration or mesh morphing. The objective of this study was to compare image-based and mesh-based statistical appearance models of the femur for finite element (FE) simulations. To this aim, (i) we compared correspondence detection methods on bone surface and in bone volume; (ii) we created an image-based and a mesh-based statistical appearance models from 130 images, which we validated using compactness, representation and generalization, and we analyzed the FE results on 50 recreated bones vs. original bones; (iii) we created 1000 new instances, and we compared the quality of the FE meshes. Results showed that the image-based approach was more accurate in volume correspondence detection and quality of FE meshes, whereas the mesh-based approach was more accurate for surface correspondence detection and model compactness. Based on our results, we recommend the use of image-based statistical appearance models for FE simulations of the femur.
Resumo:
Objectives To compare the use of pair-wise meta-analysis methods to multiple treatment comparison (MTC) methods for evidence-based health-care evaluation to estimate the effectiveness and cost-effectiveness of alternative health-care interventions based on the available evidence. Methods Pair-wise meta-analysis and more complex evidence syntheses, incorporating an MTC component, are applied to three examples: 1) clinical effectiveness of interventions for preventing strokes in people with atrial fibrillation; 2) clinical and cost-effectiveness of using drug-eluting stents in percutaneous coronary intervention in patients with coronary artery disease; and 3) clinical and cost-effectiveness of using neuraminidase inhibitors in the treatment of influenza. We compare the two synthesis approaches with respect to the assumptions made, empirical estimates produced, and conclusions drawn. Results The difference between point estimates of effectiveness produced by the pair-wise and MTC approaches was generally unpredictable—sometimes agreeing closely whereas in other instances differing considerably. In all three examples, the MTC approach allowed the inclusion of randomized controlled trial evidence ignored in the pair-wise meta-analysis approach. This generally increased the precision of the effectiveness estimates from the MTC model. Conclusions The MTC approach to synthesis allows the evidence base on clinical effectiveness to be treated as a coherent whole, include more data, and sometimes relax the assumptions made in the pair-wise approaches. However, MTC models are necessarily more complex than those developed for pair-wise meta-analysis and thus could be seen as less transparent. Therefore, it is important that model details and the assumptions made are carefully reported alongside the results.
Resumo:
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Resumo:
In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays.