166 resultados para Angst - Concept


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orexin system is a key regulator of sleep and wakefulness. In a multicenter, double-blind, randomized, placebo-controlled, two-way crossover study, 161 primary insomnia patients received either the dual orexin receptor antagonist almorexant, at 400, 200, 100, or 50 mg in consecutive stages, or placebo on treatment nights at 1-week intervals. The primary end point was sleep efficiency (SE) measured by polysomnography; secondary end points were objective latency to persistent sleep (LPS), wake after sleep onset (WASO), safety, and tolerability. Dose-dependent almorexant effects were observed on SE , LPS , and WASO . SE improved significantly after almorexant 400 mg vs. placebo (mean treatment effect 14.4%; P < 0.001). LPS (–18 min (P = 0.02)) and WASO (–54 min (P < 0.001)) decreased significantly at 400 mg vs. placebo. Adverse-event incidence was dose-related. Almorexant consistently and dose-dependently improved sleep variables. The orexin system may offer a new treatment approach for primary insomnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vital tissue provided by fresh frozen tissue banking is often required for genetic tumor profiling and tailored therapies. However, the potential patient benefits of fresh frozen tissue banking are currently limited to university hospitals. The objective of the present pilot study--the first one in the literature--was to evaluate whether fresh frozen tissue banking is feasible in a regional hospital without an integrated institute of pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions have been explained by the hapten concept, according to which a small chemical compound is too small to be recognized by the immune system. Only after covalently binding to an endogenous protein the immune system reacts to this so called hapten-carrier complex, as the larger molecule (protein) is modified, and thus immunogenic for B and T cells. Consequently, a B and T cell immune response might develop to the drug with very heterogeneous clinical manifestations. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the MHC-peptide complex in order to trigger an immune response. Rather, some drugs may bind directly and reversibly to immune receptors like the major histocompatibility complex (MHC) or the T cell receptor (TCR), thereby stimulating the cells similar to a pharmacological activation of other receptors. This concept has been termed pharmacological interaction with immune receptors the (p-i) concept. While the exact mechanism is still a matter of debate, non-covalent drug presentation clearly leads to the activation of drug-specific T cells as documented for various drugs (lidocaine, sulfamethoxazole (SMX), lamotrigine, carbamazepine, p-phenylendiamine, etc.). In some patients with drug hypersensitivity, such a response may occur within hours even upon the first exposure to the drug. Thus, the reaction to the drug may not be due to a classical, primary response, but rather be mediated by stimulating existing, pre-activated, peptide-specific T cells that are cross specific for the drug. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the peculiar nature of many drug hypersensitivity reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of focusing weak bases using a transient pH boundary was examined via high-resolution computer simulation software. Emphasis was placed on the mechanism and impact that the presence of salt, namely, NaCl, has on the ability to focus weak bases. A series of weak bases with mobilities ranging from 5 x 10(-9) to 30 x 10(-9) m2/V x s and pKa values between 3.0 and 7.5 were examined using a combination of 65.6 mM formic acid, pH 2.85, for the separation electrolyte, and 65.6 mM formic acid, pH 8.60, for the sample matrix. Simulation data show that it is possible to focus weak bases with a pKa value similar to that of the separation electrolyte, but it is restricted to weak bases having an electrophoretic mobility of 20 x 10(-9) m2/V x s or quicker. This mobility range can be extended by the addition of NaCl, with 50 mM NaCl allowing stacking of weak bases down to a mobility of 15 x 10(-9) m2/V x s and 100 mM extending the range to 10 x 10(-9) m2/V x s. The addition of NaCl does not adversely influence focusing of more mobile bases, but does prolong the existence of the transient pH boundary. This allows analytes to migrate extensively through the capillary as a single focused band around the transient pH boundary until the boundary is dissipated. This reduces the length of capillary that is available for separation and, in extreme cases, causes multiple analytes to be detected as a single highly efficient peak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prevention of coronary artery disease (CAD) and reduction of its mortality and morbidity remains a major public health challenge throughout the "Western world". Recent evidence supports the concept that the impairment of endothelial function, a hallmark of insulin resistance states, is an upstream event in the pathophysiology of insulin resistance and its main corollaries: atherosclerosis and myocardial infarction. Atherosclerosis is currently thought to be the consequence of a subtle imbalance between pro- and anti-oxidants that produces favourable conditions for lesion progression towards acute thrombotic complications and clinical events. Over the last decade, a remarkable burst of evidence has accumulated, offering the new perspective that bioavailable nitric oxide (NO) plays a pivotal role throughout the CAD-spectrum, from its genesis to the outcome after acute events. Vascular NO is a critical modulator of coronary blood flow by inhibiting smooth muscle contraction and platelet aggregation. It also acts in angiogenesis and cytoprotection. Defective endothelial nitric oxide synthase (eNOS) driven NO synthesis causes development of major cardiovascular risk factors (insulin resistance, arterial hypertension and dyslipidaemia) in mice, and characterises CAD-prone insulin-resistant humans. On the other hand, stimulation of inducible nitric oxide synthase (iNOS) and NO overproduction causes metabolic insulin resistance and characterises atherosclerosis, heart failure and cardiogenic shock in humans, suggesting a "Yin-Yang" effect of NO in the cardiovascular homeostasis. Here, we will present a concise overview of the evidence for this novel concept, providing the conceptual framework for developing a potential therapeutic strategy to prevent and treat CAD.

Relevância:

20.00% 20.00%

Publicador: