41 resultados para Amsterdam-3
Resumo:
OBJECTIVE: The aim of our study was to correlate global T2 values of microfracture repair tissue (RT) with clinical outcome in the knee joint. METHODS: We assessed 24 patients treated with microfracture in the knee joint. Magnetic resonance (MR) examinations were performed on a 3T MR unit, T2 relaxation times were obtained with a multi-echo spin-echo technique. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. Slices covering the cartilage RT were selected and region of interest analysis was done. An individual T2 index was calculated with global mean T2 of the RT and global mean T2 of normal, hyaline cartilage. The Lysholm score and the International Knee Documentation Committee (IKDC) knee evaluation forms were used for the assessment of clinical outcome. Bivariate correlation analysis and a paired, two tailed t test were used for statistics. RESULTS: Global T2 values of the RT [mean 49.8ms, standards deviation (SD) 7.5] differed significantly (P<0.001) from global T2 values of normal, hyaline cartilage (mean 58.5ms, SD 7.0). The T2 index ranged from 61.3 to 101.5. We found the T2 index to correlate with outcome of the Lysholm score (r(s)=0.641, P<0.001) and the IKDC subjective knee evaluation form (r(s)=0.549, P=0.005), whereas there was no correlation with the IKDC knee form (r(s)=-0.284, P=0.179). CONCLUSION: These findings indicate that T2 mapping is sensitive to assess RT function and provides additional information to morphologic MRI in the monitoring of microfracture.
Resumo:
While voxel-based 3-D MRI analysis methods as well as assessment of subtracted ictal versus interictal perfusion studies (SISCOM) have proven their potential in the detection of lesions in focal epilepsy, a combined approach has not yet been reported. The present study investigates if individual automated voxel-based 3-D MRI analyses combined with SISCOM studies contribute to an enhanced detection of mesiotemporal epileptogenic foci. Seven consecutive patients with refractory complex partial epilepsy were prospectively evaluated by SISCOM and voxel-based 3-D MRI analysis. The functional perfusion maps and voxel-based statistical maps were coregistered in 3-D space. In five patients with temporal lobe epilepsy (TLE), the area of ictal hyperperfusion and corresponding structural abnormalities detected by 3-D MRI analysis were identified within the same temporal lobe. In two patients, additional structural and functional abnormalities were detected beyond the mesial temporal lobe. Five patients with TLE underwent epileptic surgery with favourable postoperative outcome (Engel class Ia and Ib) after 3-5 years of follow-up, while two patients remained on conservative treatment. In summary, multimodal assessment of structural abnormalities by voxel-based analysis and SISCOM may contribute to advanced observer-independent preoperative assessment of seizure origin.
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.
Resumo:
BACKGROUND/AIMS: While several risk factors for the histological progression of chronic hepatitis C have been identified, the contribution of HCV genotypes to liver fibrosis evolution remains controversial. The aim of this study was to assess independent predictors for fibrosis progression. METHODS: We identified 1189 patients from the Swiss Hepatitis C Cohort database with at least one biopsy prior to antiviral treatment and assessable date of infection. Stage-constant fibrosis progression rate was assessed using the ratio of fibrosis Metavir score to duration of infection. Stage-specific fibrosis progression rates were obtained using a Markov model. Risk factors were assessed by univariate and multivariate regression models. RESULTS: Independent risk factors for accelerated stage-constant fibrosis progression (>0.083 fibrosis units/year) included male sex (OR=1.60, [95% CI 1.21-2.12], P<0.001), age at infection (OR=1.08, [1.06-1.09], P<0.001), histological activity (OR=2.03, [1.54-2.68], P<0.001) and genotype 3 (OR=1.89, [1.37-2.61], P<0.001). Slower progression rates were observed in patients infected by blood transfusion (P=0.02) and invasive procedures or needle stick (P=0.03), compared to those infected by intravenous drug use. Maximum likelihood estimates (95% CI) of stage-specific progression rates (fibrosis units/year) for genotype 3 versus the other genotypes were: F0-->F1: 0.126 (0.106-0.145) versus 0.091 (0.083-0.100), F1-->F2: 0.099 (0.080-0.117) versus 0.065 (0.058-0.073), F2-->F3: 0.077 (0.058-0.096) versus 0.068 (0.057-0.080) and F3-->F4: 0.171 (0.106-0.236) versus 0.112 (0.083-0.142, overall P<0.001). CONCLUSIONS: This study shows a significant association of genotype 3 with accelerated fibrosis using both stage-constant and stage-specific estimates of fibrosis progression rates. This observation may have important consequences for the management of patients infected with this genotype.
Resumo:
This paper presents a system for 3-D reconstruction of a patient-specific surface model from calibrated X-ray images. Our system requires two X-ray images of a patient with one acquired from the anterior-posterior direction and the other from the axial direction. A custom-designed cage is utilized in our system to calibrate both images. Starting from bone contours that are interactively identified from the X-ray images, our system constructs a patient-specific surface model of the proximal femur based on a statistical model based 2D/3D reconstruction algorithm. In this paper, we present the design and validation of the system with 25 bones. An average reconstruction error of 0.95 mm was observed.
Resumo:
TLR2 signaling participates in the pathogenesis of pneumococcal meningitis. In infant rats, the TLR2 agonist Pam(3)CysSK(4) was applied intracisternally (0.5 microg in 10 microl saline) alone or after induction of pneumococcal meningitis to investigate the effect of TLR2 activation on cerebrospinal fluid (CSF) inflammation and hippocampal apoptosis. A dose effect of Pam(3)CysSK(4) on apoptosis was investigated by intracisternal application of 0.5 microg in 10 microl saline and 40 microg in 20 microl saline. Pam(3)CysSK(4) neither induced apoptosis in sham-operated mice nor aggravated apoptosis in acute infection. However, Pam(3)CysSK(4) induced pleocytosis, TNF-alpha and MMP-9 in CSF in sham-infection but not during acute meningitis. We conclude that TLR2 signaling triggered by Pam(3)CysSK(4) at a dosage capable to induce a neuroinflammatory response does not induce hippocampal apoptosis in the infant rat model of experimental pneumococcal meningitis.
Resumo:
BACKGROUND There is ongoing debate on the optimal drug-eluting stent (DES) in diabetic patients with coronary artery disease. Biodegradable polymer drug-eluting stents (BP-DES) may potentially improve clinical outcomes in these high-risk patients. We sought to compare long-term outcomes in patients with diabetes treated with biodegradable polymer DES vs. durable polymer sirolimus-eluting stents (SES). METHODS We pooled individual patient-level data from 3 randomized clinical trials (ISAR-TEST 3, ISAR-TEST 4 and LEADERS) comparing biodegradable polymer DES with durable polymer SES. Clinical outcomes out to 4years were assessed. The primary end point was the composite of cardiac death, myocardial infarction and target-lesion revascularization. Secondary end points were target lesion revascularization and definite or probable stent thrombosis. RESULTS Of 1094 patients with diabetes included in the present analysis, 657 received biodegradable polymer DES and 437 durable polymer SES. At 4years, the incidence of the primary end point was similar with BP-DES versus SES (hazard ratio=0.95, 95% CI=0.74-1.21, P=0.67). Target lesion revascularization was also comparable between the groups (hazard ratio=0.89, 95% CI=0.65-1.22, P=0.47). Definite or probable stent thrombosis was significantly reduced among patients treated with BP-DES (hazard ratio=0.52, 95% CI=0.28-0.96, P=0.04), a difference driven by significantly lower stent thrombosis rates with BP-DES between 1 and 4years (hazard ratio=0.15, 95% CI=0.03-0.70, P=0.02). CONCLUSIONS In patients with diabetes, biodegradable polymer DES, compared to durable polymer SES, were associated with comparable overall clinical outcomes during follow-up to 4years. Rates of stent thrombosis were significantly lower with BP-DES.