33 resultados para Albedo
Resumo:
Context. On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae's landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of similar to 15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.
Resumo:
The lunar surface is very efficient in reflecting impinging solar wind ions as energetic neutral atoms (ENAs). A global analysis of lunar hydrogen ENAs showed that on average 16% of the solar wind protons are reflected, and that the reflected fraction can range from less than 8% to more than 24%, depending on location. It is established that magnetic anomalies reduce the flux of backscattered hydrogen ENAs by screening-off a fraction of the impinging solar wind. The effects of the surface properties, such as porosity, roughness, chemical composition, and extent of weathering, were not known. In this paper, we conduct an in-depth analysis of ENA observations of the South Pole-Aitken basin to determine which of the surface properties might be responsible for the observed variation in the integral ENA flux. The South Pole-Aitken basin with its highly variable surface properties is an ideal object for such studies. It is very deep, possesses strikingly elevated concentrations in iron and thorium, has a low albedo and coincides with a cluster of strong magnetic anomalies located on the northern rim of the basin. Our analysis shows that whereas, as expected, the magnetic anomalies can account well for the observed ENA depletion at the South Pole-Aitken basin, none of the other surface properties seem to influence the ENA reflection efficiency. Therefore, the integral flux of backscattered hydrogen ENAs is mainly determined by the impinging plasma flux and ENA imaging of backscattered hydrogen captures the electrodynamics of the plasma at the surface. We cannot exclude minor effects by surface features. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Context. On 12 November 2014, the European mission Rosetta delivered the Philae lander on the nucleus of comet 67P /Churyumov-Gerasimenko (67P). After the first touchdown, the lander bounced three times before finally landing at a site named Abydos. Aims. We provide a morphologically detailed analysis of the Abydos landing site to support Philae's measurements and to give context for the interpretation of the images coming from the Comet Infrared and Visible Analyser (CIVA) camera system onboard the lander. Methods. We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 6 December 2014 to perform the analysis of the Abydos landing site, which provided the geomorphological map, the gravitational slope map, the size-frequency distribution of the boulders. We also computed the albedo and spectral reddening maps. Results. The morphological analysis of the region could suggest that Philae is located on a primordial terrain. The Abydos site is surrounded by two layered and fractured outcrops and presents a 0.02 km(2) talus deposit rich in boulders. The boulder size frequency distribution gives a cumulative power-law index of 4.0 + 0.3/0.4, which is correlated with gravitational events triggered by sublimation and /or thermal fracturing causing regressive erosion. The average value of the albedo is 5.8% at lambda(1) = 480.7 nm and 7.4% at lambda(2) = 649.2 nm, which is similar to the global albedos derived by OSIRIS and CIVA, respectively.