63 resultados para Acoela indeterminata, length
Resumo:
PURPOSE: To quantify the interobserver variability of abdominal aortic aneurysm (AAA) neck length and angulation measurements. MATERIALS AND METHODS: A total of 25 consecutive patients scheduled for endovascular AAA repair underwent follow-up 64-row computed tomographic (CT) angiography in 0.625-mm collimation. AAA neck length and angulation were determined by four blinded, independent readers. AAA neck length was defined as the longitudinal distance between the first transverse CT slice directly distal to the lowermost renal artery and the first transverse CT slice that showed at least a 15% larger outer aortic wall diameter versus the diameter measured directly below the lowermost renal artery. Infrarenal AAA neck angulation was defined as the true angle between the longitudinal axis of the proximal AAA neck and the longitudinal axis of the AAA lumen as analyzed on three-dimensional CT reconstructions. RESULTS: Mean deviation in aortic neck length determination was 32.3% and that in aortic neck angulation was 32.1%. Interobserver variability of aortic neck length and angulation measurements was considerable: in any reader combination, at least one measurement difference was outside the predefined limits of agreement. CONCLUSIONS: Assessment of the longitudinal extension and angulation of the infrarenal aortic neck is associated with substantial observer variability, even if measurement is carried out according to a standardized protocol. Further studies are mandatory to assess dedicated technical approaches to minimize variance in the determination of the longitudinal extension and angulation of the infrarenal aortic neck.
Resumo:
The study is based on experimental work conducted in alpine snow. We made microwave radiometric and near-infrared reflectance measurements of snow slabs under different experimental conditions. We used an empirical relation to link near-infrared reflectance of snow to the specific surface area (SSA), and converted the SSA into the correlation length. From the measurements of snow radiances at 21 and 35 GHz , we derived the microwave scattering coefficient by inverting two coupled radiative transfer models (the sandwich and six-flux model). The correlation lengths found are in the same range as those determined in the literature using cold laboratory work. The technique shows great potential in the determination of the snow correlation length under field conditions.
Resumo:
We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.
Resumo:
We report a combined experimental and theoretical investigation of the length dependence and anchor group dependence of the electrical conductance of a series of oligoyne molecular wires in single-molecule junctions with gold contacts. Experimentally, we focus on the synthesis and properties of diaryloligoynes with n = 1, 2, and 4 triple bonds and the anchor dihydrobenzo[b]thiophene (BT). For comparison, we also explored the aurophilic anchor group cyano (CN), amino (NH2), thiol (SH), and 4-pyridyl (PY). Scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics. The BT moiety is superior as compared to traditional anchoring groups investigated so far. BT-terminated oligoynes display a 100% probability of junction formation and possess conductance values which are the highest of the oligoynes studied and, moreover, are higher than other conjugated molecular wires of similar length. Density functional theory (DFT)-based calculations are reported for oligoynes with n = 1−4 triple bonds. Complete conductance traces and conductance distributions are computed for each family of molecules. The sliding of the anchor groups leads to oscillations in both the electrical conductance and the binding energies of the studied molecular wires. In agreement with experimental results, BT-terminated oligoynes are predicted to have a high electrical conductance. The experimental attenuation constants βH range between 1.7 nm−1 (CN) and 3.2 nm−1 (SH) and show the following trend: βH(CN) < βH(NH2) < βH(BT) < βH(PY) ≈ βH(SH). DFT-based calculations yield lower values, which range between 0.4 nm−1 (CN) and 2.2 nm−1 (PY).
Resumo:
The synthesis is reported of a new series of oligo(aryleneethynylene) (OAE) derivatives of up to ca. 6 nm in molecular length (OAE9) using iterative Pd-mediated Sonogashira cross-coupling methodology. The oligo-p-phenyleneethynylene cores of the molecular wires are functionalized at both termini with pyridyl units for attachment to gold leads. The molecular structures determined by single-crystal X-ray analysis are reported for OAE4, OAE5, OAE7, and OAE8a. The charge transport characteristics of derivatives OAE3–OAE9 in single-molecular junctions have been studied using the mechanically controlled break junction technique. The data demonstrate that the junction conductance decreases with increasing molecular length. A transition from coherent transport via tunneling to a hopping mechanism is found for OAE wires longer than ca. 3 nm.
Resumo:
Introduction: Nocturnal dreams can be considered as a kind of simulation of the real world on a higher cognitive level (Erlacher & Schredl, 2008). Within lucid dreams, the dreamer is aware of the dream state and thus able to control the ongoing dream content. Previous studies could demonstrate that it is possible to practice motor tasks during lucid dreams and doing so improved performance while awake (Erlacher & Schredl, 2010). Even though lucid dream practice might be a promising kind of cognitive rehearsal in sports, little is known about the characteristics of actions in lucid dreams. The purpose of the present study was to explore the relationship between time in dreams and wakefulness because in an earlier study (Erlacher & Schredl, 2004) we found that performing squads took lucid dreamers 44.5 % more time than in the waking state while for counting the same participants showed no differences between dreaming and wakefulness. To find out if the task modality, the task length or the task complexity require longer times in lucid dreams than in wakefulness three experiments were conducted. Methods: In the first experiment five proficient lucid dreamers spent two to three non-consecutive nights in the sleep laboratory with polysomnographic recording to control for REM sleep and determine eye signals. Participants counted from 1-10, 1-20 and 1-30 in wakefulness and in their lucid dreams. While dreaming they marked onset of lucidity as well as beginning and end of the counting task with a Left-Right-Left-Right eye movement and reported their dreams after being awakened. The same procedure was used for the second experiment with seven lucid dreamers except that they had to walk 10, 20 or 30 steps. In the third experiment nine participants performed an exercise involving gymnastics elements such as various jumps and a roll. To control for length of the task the gymnastic exercise in the waking state lasted about the same time as walking 10 steps. Results: As a general result we found – as in the study before – that performing a task in the lucid dream requires more time than in wakefulness. This tendency was found for all three tasks. However, there was no difference for the task modality (counting vs. motor task). Also the relative time for the different lengths of the tasks showed no difference. And finally, the more complex motor task (gymnastic routine) did not require more time in lucid dreams than the simple motor task. Discussion/Conclusion: The results showed that there is a robust effect of time in lucid dreams compared to wakefulness. The three experiments could not explain that those differences are caused by task modality, task length or task complexity. Therefore further possible candidates needs to be investigated e.g. experience in lucid dreaming or psychological variables. References: Erlacher, D. & Schredl, M. (2010). Practicing a motor task in a lucid dream enhances subsequent performance: A pilot study. The Sport Psychologist, 24(2), 157-167. Erlacher, D. & Schredl, M. (2008). Do REM (lucid) dreamed and executed actions share the same neural substrate? International Journal of Dream Research, 1(1), 7-13. Erlacher, D. & Schredl, M. (2004). Time required for motor activity in lucid dreams. Perceptual and Motor Skills, 99, 1239-1242.