32 resultados para ANIMAL CELLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE AND DESIGN A systematic review of all literature was done to assess the ability of the progestin dienogest (DNG) to influence the inflammatory response of endometriotic cells. MAIN OUTCOME MEASURES In vitro and in vivo studies report an influence of DNG on the inflammatory response in eutopic or ectopic endometrial tissue (animal or human). RESULTS After strict inclusion criteria were satisfied, 15 studies were identified that reported a DNG influence on the inflammatory response in endometrial tissue. These studies identified a modulation of prostaglandin (PG) production and metabolism (PGE2, PGE2 synthase, cyclo-oxygenase-2 and microsomal PGE synthase-1), pro-inflammatory cytokine and chemokine production [interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, monocyte chemoattractant protein-1 and stromal cell-derived factor-1], growth factor biosynthesis (vascular endothelial growth factor and nerve growth factor) and signaling kinases, responsible for the control of inflammation. Evidence supports a progesterone receptor-mediated inhibition of the inflammatory response in PR-expressing epithelial cells. It also indicated that DNG inhibited the inflammatory response in stromal cells, however, whether this was via a PR-mediated mechanism is not clear. CONCLUSIONS DNG has a significant effect on the inflammatory microenvironment of endometriotic lesions that may contribute to its clinical efficacy. A better understanding of the specific anti-inflammatory activity of DNG and whether this contributes to its clinical efficacy can help develop treatments that focus on the inhibition of inflammation while minimizing hormonal modulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parasites have evolved a plethora of strategies to ensure their survival. The intracellular parasite Theileria parva secures its propagation and spreads through the infected animal by infecting and transforming T cells, inducing their continuous proliferation and rendering them metastatic. In previous work, we have shown that the parasite induces constitutive activation of the transcription factor NF-kappaB, by inducing the constitutive degradation of its cytoplasmic inhibitors. The biological significance of NF-kappaB activation in T. parva-infected cells, however, has not yet been defined. Cells that have been transformed by viruses or oncogenes can persist only if they manage to avoid destruction by the apoptotic mechanisms that are activated on transformation and that contribute to maintain cellular homeostasis. We now demonstrate that parasite-induced NF-kappaB activation plays a crucial role in the survival of T. parva-transformed T cells by conveying protection against an apoptotic signal that accompanies parasite-mediated transformation. Consequently, inhibition of NF-kappaB nuclear translocation and the expression of dominant negative mutant forms of components of the NF-kappaB activation pathway, such as IkappaBalpha or p65, prompt rapid apoptosis of T. parva-transformed T cells. Our findings offer important insights into parasite survival strategies and demonstrate that parasite-induced constitutive NF-kappaB activation is an essential step in maintaining the transformed phenotype of the infected cells.