61 resultados para ACTIVATED MONOCYTES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined the mechanism by which bacterial cell walls from two gram-positive meningeal pathogens, Streptococcus pneumoniae and the group B streptococcus, induced neuronal injury in primary cultures of rat brain cells. Cell walls from both organisms produced cellular injury to similar degrees in pure astrocyte cultures but not in pure neuronal cultures. Cell walls also induced nitric oxide production in cultures of astrocytes or microglia. When neurons were cultured together with astrocytes or microglia, the cell walls of both organisms became toxic to neurons. L-NAME, a nitric oxide synthase inhibitor, protected neurons from cell wall-induced toxicity in mixed cultures with glia, as did dexamethasone. In contrast, an excitatory amino acid antagonist (MK801) had no effect. Low concentrations of cell walls from either gram-positive pathogen added together with the excitatory amino acid glutamate resulted in synergistic neurotoxicity that was inhibited by L-NAME. The induction of nitric oxide production and neurotoxicity by cell walls was independent of the presence of serum, whereas endotoxin exhibited these effects only in the presence of serum. We conclude that gram-positive cell walls can cause toxicity in neurons by inducing the production of nitric oxide in astrocytes and microglia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pneumococcal meningitis is associated with caspase 3-dependent apoptosis of recently post-mitotic immature neurons in the dentate gyrus of the hippocampus. The death of these cells is implicated in the learning and memory deficits in patients surviving the disease. The stress-activated protein kinase c-Jun N-terminal kinase (JNK) has been shown to be an important mediator of caspase 3-dependent neuronal apoptosis. However, whether JNK is involved in hippocampal apoptosis caused by pneumococcal meningitis has so far not been investigated. Here we show in a neonatal rat model of pneumococcal meningitis that JNK3 but not JNK1 or JNK2 is activated in the hippocampus during the acute phase of infection. At the cellular level, JNK3 activation was accompanied in the dentate gyrus by markedly increased phosphorylation of its major downstream target c-Jun in early immature (Hu-positive) neurons, but not in migrating (doublecortin-positive) neurons, the cells that do undergo apoptosis. These findings suggested that JNK may not be involved in pneumococcal meningitis-induced hippocampal apoptosis. Indeed, although intracerebroventricular administration of D-JNKI-1 or AS601245 (two highly specific JNK inhibitors) inhibited c-Jun phosphorylation and protein expression in the hippocampus, hippocampal apoptosis was unaffected. Collectively, these results demonstrate that JNK does not mediate hippocampal apoptosis in pneumococcal meningitis, and that JNK may be involved in processes unrelated to apoptosis in this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The migration of monocytes to sites of inflammation is largely determined by their response to chemokines. Although the chemokine specificities and expression patterns of chemokine receptors are well defined, it is still a matter of debate how cells integrate the messages provided by different chemokines that are concomitantly produced in physiological or pathological situations in vivo. We present evidence for one regulatory mechanism of human monocyte trafficking. Monocytes can integrate stimuli provided by inflammatory chemokines in the presence of homeostatic chemokines. In particular, migration and cell responses could occur at much lower concentrations of the CCR2 agonists, in the presence of chemokines (CCL19 and CCL21) that per se do not act on monocytes. Binding studies on CCR2(+) cells showed that CCL19 and CCL21 do not compete with the CCR2 agonist CCL2. Furthermore, the presence of CCL19 or CCL21 could influence the degradation of CCL2 and CCL7 on cells expressing the decoy receptor D6. These findings disclose a new scenario to further comprehend the complexity of chemokine-based monocyte trafficking in a vast variety of human inflammatory disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a systematic study that defines molecular profiles of adjuvanticity and pyrogenicity induced by agonists of human Toll-like receptor molecules in vitro. Using P(3)CSK(4), Lipid A and Poly I:C as model adjuvants we show that all three molecules enhance the expansion of IFNgamma(+)/CD4(+) T cells from their naïve precursors following priming with allogeneic DC in vitro. In contrast, co-culture of naive CD4(+) T cells with allogeneic monocytes and TLR2/TLR4 agonists only resulted in enhanced T cell proliferation. Distinct APC molecular signatures in response to each TLR agonist underline the dual effect observed on T cell responses. Using protein and gene expression assays, we show that TNF-alpha and CXCL10 represent DC-restricted molecular signatures of TLR2/TLR4 and TLR3 activation, respectively, in sharp contrast to IL-6 produced by monocytes upon stimulation with P(3)CSK(4) and Lipid A. Furthermore, although all TLR agonists are able to up-regulate proIL-1beta specific gene in both cell types, only monocyte activation with Lipid A results in detectable IL-1beta release. These molecular profiles, provide a simple screen to select new immune enhancers of human Th1 responses suitable for clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vitamin A metabolite retinoic acid (RA) plays a fundamental role in cellular functions by activating nuclear receptors. Retinaldehyde dehydrogenase-II (RALDH2) creates localized RA gradients needed for proper embryonic development, but very little is known regarding its regulated expression in adults. Using a human ex vivo model of allergic inflammation by coincubating IgE receptor-activated mast cells (MCs) with blood basophils, we observed prominent induction of a protein that was identified as RALDH2 by mass spectroscopy. RALDH2 was selectively induced in basophils by MC-derived interleukin-3 (IL-3) involving PI3-kinase and NF-kappaB pathways. Importantly, neither constitutive nor inducible RALDH2 expression was detectable in any other human myeloid or lymphoid leukocyte, including dendritic cells. RA generated by RALDH2 in basophils modulates IL-3-induced gene expression in an autocrine manner, providing positive (CD25) as well as negative (granzyme B) regulation. It also acts in a paracrine fashion on T-helper cells promoting the expression of CD38 and alpha4/beta7 integrins. Furthermore, RA derived from IL-3-activated basophils provides a novel mechanism of Th2 polarization. Thus, RA must be viewed as a tightly controlled basophil-derived mediator with a high potential for regulating diverse functions of immune and resident cells in allergic diseases and other Th2-type immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The psychoactive cannabinoids from Cannabis sativa L. and the arachidonic acid-derived endocannabinoids are nonselective natural ligands for cannabinoid receptor type 1 (CB(1)) and CB(2) receptors. Although the CB(1) receptor is responsible for the psychomodulatory effects, activation of the CB(2) receptor is a potential therapeutic strategy for the treatment of inflammation, pain, atherosclerosis, and osteoporosis. Here, we report that the widespread plant volatile (E)-beta-caryophyllene [(E)-BCP] selectively binds to the CB(2) receptor (K(i) = 155 +/- 4 nM) and that it is a functional CB(2) agonist. Intriguingly, (E)-BCP is a common constituent of the essential oils of numerous spice and food plants and a major component in Cannabis. Molecular docking simulations have identified a putative binding site of (E)-BCP in the CB(2) receptor, showing ligand pi-pi stacking interactions with residues F117 and W258. Upon binding to the CB(2) receptor, (E)-BCP inhibits adenylate cylcase, leads to intracellular calcium transients and weakly activates the mitogen-activated kinases Erk1/2 and p38 in primary human monocytes. (E)-BCP (500 nM) inhibits lipopolysaccharide (LPS)-induced proinflammatory cytokine expression in peripheral blood and attenuates LPS-stimulated Erk1/2 and JNK1/2 phosphorylation in monocytes. Furthermore, peroral (E)-BCP at 5 mg/kg strongly reduces the carrageenan-induced inflammatory response in wild-type mice but not in mice lacking CB(2) receptors, providing evidence that this natural product exerts cannabimimetic effects in vivo. These results identify (E)-BCP as a functional nonpsychoactive CB(2) receptor ligand in foodstuff and as a macrocyclic antiinflammatory cannabinoid in Cannabis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: The aim of this study was to examine mechanical, microbiologic, and morphologic changes of the appendicle rim to assess if it is appropriate to dissect the appendix with the ultrasound-activated scalpel (UAS) during laparoscopic appendectomy. Materials and Methods: After laparoscopic resection of the appendix, using conventional Roeder slings, we investigated 50 appendicle rims with an in vitro procedure. The overall time of dissection of the mesoappendix with UAS was noted. Following removal, the appendix was dissected in vitro with the UAS one cme from the resection rim. Seal-burst pressures were recorded. Bacterial cultures of the UAS-resected rim were compared with those of the scissors resected rim. Tissue changes were quantified histologically with hematoxylin and eosin (HE) stains. Results: The average time to dissect the mesoappendix was 228 seconds (25-900). Bacterial culture growths were less in the UAS-resected probes (7 versus 36 positive probes; (p > 0.01). HE-stained tissues revealed mean histologic changes in the lamina propria muscularis externa of 2 mm depth. The seal-burst pressure levels of the appendicle lumen had a mean of 420 mbar. Seal-burst pressures and depths of histologic changes were not dependent on the different stages of appendicitis investigated, gender, or age groups. Seal-burst pressure levels were not related to different depths of tissue changes (P = 0.64). Conclusions: The UAS is a rapid instrument for laparoscopic appendectomy and appears to be safe with respect to stability, sterility and tissue changes. It avoids complex time consuming instrument change manoeuvres and current transmission, which may induce intra- and postoperative complications. Our results suggest that keeping a safety margin of at least 5 mm from the bowel would be sufficient to avoid thermal damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Severe brain trauma leads to an activation of the immune system. To this date, neither the exact perturbation of the specific immune reaction induced by the traumatic brain injury (TBI), nor the interactions leading to the infiltration of peripheral immune cells into the brain are fully understood. PATIENTS AND METHODS: Serum was collected from 17 patients with TBI and a long bone fracture, 24 patients with an isolated long bone fracture and from healthy individuals. The effect of the serum on normal human monocytes and T-lymphocytes was tested in vitro by assessing proliferation and expression of surface markers, chemokine receptors and cytokines. RESULTS: Serum collected from patients with a TBI and a long bone fracture increased the expression of the chemokine receptor CCR4 in monocytes when compared to patients with an isolated long bone fracture. Extending this comparison to T-lymphocytes, the serum from TBI patients induced lower proliferation rates and decreased expression of the pro-inflammatory cytokine TNF-alpha, while simultaneously increasing the secretion of immune-modulatory cytokines (IL-4, IL-10 and TGF-beta) (p<0.05). CONCLUSION: Patients with a TBI release currently unknown soluble factors into the circulating blood that up regulate expression of chemokine receptor CCR4 in peripheral blood monocytes whilst concurrently inducing expression of immunosuppressive cytokines by activated T-lymphocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintenance of intestinal epithelial barrier function is of vital importance in preventing uncontrolled influx of antigens and the potentially ensuing inflammatory disorders. Intestinal intraepithelial lymphocytes (IEL) are in intimate contact with epithelial cells and may critically regulate the epithelial barrier integrity. While a preserving impact has been ascribed to the T-cell receptor (TCR)-gammadelta subset of IEL, IEL have also been shown to attenuate the barrier function. The present study sought to clarify the effects of IEL by specifically investigating the influence of the TCR-alphabeta CD8alphabeta and TCR-alphabeta CD8alphaalpha subsets of IEL on the intestinal epithelial barrier integrity. To this end, an in vitro coculture system of the murine intestinal crypt-derived cell-line mIC(cl2) and syngeneic ex vivo isolated IEL was employed. Epithelial integrity was assessed by analysis of transepithelial resistance (TER) and paracellular flux of fluorescein isothiocyanate-conjugated (FITC-) dextran. The TCR-alphabeta CD8alphaalpha IEL and resting TCR-alphabeta CD8alphabeta IEL did not affect TER of mIC(cl2) or flux of FITC-dextran. In contrast, activated TCR-alphabeta CD8alphabeta IEL clearly disrupted the integrity of the mIC(cl2) monolayer. No disrupting effect was seen with activated TCR-alphabeta CD8alphabeta IEL from interferon-gamma knockout mice. These findings demonstrate that secretion of interferon-gamma by activated TCR-alphabeta CD8alphabeta IEL is strictly required and also sufficient for disrupting the intestinal epithelial barrier function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Villous atrophy and increased numbers of intraepithelial T cells in duodenal biopsies represent a hallmark of coeliac disease. In the present study, an attempt has been made to define whether cytotoxic cell subsets are activated in situ in the affected mucosa of susceptible individuals early after ingestion of a gluten-containing diet. Duodenal biopsies from 11 patients with coeliac disease who repeatedly underwent endoscopic biopsy after ingestion of individually dosed amounts of gluten were used for immunohistochemistry and in situ hybridization. To identify the cell subsets expressing perforin mRNA and protein, in situ hybridization and FACS analyses were performed on cells isolated from fresh biopsies. Compared with normal mucosa, the number of intraepithelial lymphocytes containing perforin mRNA and protein increased significantly in tissue samples showing moderate or florid coeliac disease and closely paralleled the severity of morphological alteration, whereas the frequency of perforin-expressing lamina propria lymphocytes increased only moderately. Cells isolated from florid biopsies that expressed perforin mRNA and protein were preferentially T-cell receptor (TCR) alphabeta T cells. The increase in both the absolute number and the percentage of lymphocytes expressing perforin mRNA indicates in situ activation of lymphocytes within the epithelial compartment in florid coeliac disease upon ingestion of a gluten-containing diet in patients predisposed to coeliac disease.