84 resultados para 457
Resumo:
Enophthalmos is a relatively frequent and misdiagnosed clinical sign in orbital diseases. The knowledge of the different etiologies of enophthalmos and its adequate management are important, because in some cases, it could be the first sign revealing a life-threatening disease. This article provides a comprehensive review of the pathophysiology, evaluation, and management of enophthalmos. The main etiologies, such as trauma, chronic maxillary atelectasis (silent sinus syndrome), breast cancer metastasis, and orbital varix, will be discussed. Its objective is to enable the reader to recognize, assess, and treat the spectrum of disorders causing enophthalmos.
Resumo:
Skeletal muscle atrophy and fatty infiltration develop after tendon tearing. The extent of atrophy serves as one prognostic factor for the outcome of surgical repair of rotator cuff tendon tears. We asked whether mRNA of genes involved in regulation of degradative processes leading to muscle atrophy, ie, FOXOs, MSTN, calpains, cathepsins, and transcripts of the ubiquitin-proteasome pathway, are overexpressed in the supraspinatus muscle in patients with and without rotator cuff tears. We evaluated biopsy specimens collected during surgery of 53 consecutive patients with different sizes of rotator cuff tendon tears and six without tears. The levels of corresponding gene transcripts in total RNA extracts were assessed by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Supraspinatus muscle atrophy was assessed by MRI. The area of muscle tissue (or atrophy), decreased (increased) with increasing tendon tear size. The transcripts of CAPN1, UBE2B, and UBE3A were upregulated more than twofold in massive rotator cuff tears as opposed to smaller tears or patients without tears. These atrophy gene products may be involved in cellular processes that impair functional recovery of affected muscles after surgical rotator cuff repair. However, the damaging effects of gene products in their respective proteolytic processes on muscle structures and proteins remains to be investigated.
Resumo:
OBJECTIVE: Compare changes in P-wave amplitude of the intra-atrial electrocardiogram (ECG) and its corresponding transesophageal echocardiography (TEE)-controlled position to verify the exact localization of a central venous catheter (CVC) tip. DESIGN: A prospective study. SETTING: University, single-institutional setting. PARTICIPANTS: Two hundred patients undergoing elective cardiac surgery. INTERVENTIONS: CVC placement via the right internal jugular vein with ECG control using the guidewire technique and TEE control in 4 different phases: phase 1: CVC placement with normalized P wave and measurement of distance from the crista terminalis to the CVC tip; phase 2: TEE-controlled placement of the CVC tip; parallel to the superior vena cava (SVC) and measurements of P-wave amplitude; phase 3: influence of head positioning on CVC migration; and phase 4: evaluation of positioning of the CVC postoperatively using a chest x-ray. MEASUREMENTS AND MAIN RESULTS: The CVC tip could only be visualized in 67 patients on TEE with a normalized P wave. In 198 patients with the CVC parallel to the SVC wall controlled by TEE (phase 2), an elevated P wave was observed. Different head movements led to no significant migration of the CVC (phase 3). On a postoperative chest-x-ray, the CVC position was correct in 87.6% (phase 4). CONCLUSION: The study suggests that the position of the CVC tip is located parallel to the SVC and 1.5 cm above the crista terminalis if the P wave starts to decrease during withdrawal of the catheter. The authors recommend that ECG control as per their study should be routinely used for placement of central venous catheters via the right internal jugular vein.
Resumo:
Pleckstrin is a modular platelet protein consisting of N- and C-terminal pleckstrin homology (PH) domains, a central dishevelled egl10 and pleckstrin (DEP) domain and a phosphorylation region. Following agonist-induced platelet stimulation, dimeric pleckstrin translocates to the plasma membrane, is phosphorylated and then monomerizes. A recent study found that pleckstrin null platelets from a knockout mouse have a defect in granule secretion, actin polymerization and aggregation. However, the mechanism of pleckstrin signaling for this function is unknown. Our recent studies have led to the identification of a novel pleckstrin-binding protein, serum deprivation response protein (SDPR), by co-immunoprecipitation, GST-pulldowns and nanospray quadruple time of flight mass spectrometry. We show that this interaction occurs directly through N-terminal sequences of pleckstrin. Both pleckstrin and SDPR are phosphorylated by protein kinase C (PKC), but the interaction between pleckstrin and SDPR was shown to be independent of PKC inhibition or activation. These results suggest that SDPR may facilitate the translocation of nonphosphorylated pleckstrin to the plasma membrane in conjunction with phosphoinositides that bind to the C-terminal PH domain. After binding of pleckstrin to the plasma membrane, its phosphorylation by PKC exerts downstream effects on platelet aggregation/secretion.
Resumo:
The objective of this retrospective study was to assess image quality with pulmonary CT angiography (CTA) using 80 kVp and to find anthropomorphic parameters other than body weight (BW) to serve as selection criteria for low-dose CTA. Attenuation in the pulmonary arteries, anteroposterior and lateral diameters, cross-sectional area and soft-tissue thickness of the chest were measured in 100 consecutive patients weighing less than 100 kg with 80 kVp pulmonary CTA. Body surface area (BSA) and contrast-to-noise ratios (CNR) were calculated. Three radiologists analyzed arterial enhancement, noise, and image quality. Image parameters between patients grouped by BW (group 1: 0-50 kg; groups 2-6: 51-100 kg, decadally increasing) were compared. CNR was higher in patients weighing less than 60 kg than in the BW groups 71-99 kg (P between 0.025 and <0.001). Subjective ranking of enhancement (P = 0.165-0.605), noise (P = 0.063), and image quality (P = 0.079) did not differ significantly across all patient groups. CNR correlated moderately strongly with weight (R = -0.585), BSA (R = -0.582), cross-sectional area (R = -0.544), and anteroposterior diameter of the chest (R = -0.457; P < 0.001 all parameters). We conclude that 80 kVp pulmonary CTA permits diagnostic image quality in patients weighing up to 100 kg. Body weight is a suitable criterion to select patients for low-dose pulmonary CTA.