39 resultados para 423
Resumo:
The effectiveness of medical treatment depends not only on the appropriateness of the treatment modality but also on the patient's compliance with the intended regimen. The consequences of failing to comply can be damaging and devastating for the individual patient and his/her family. Noncompliance also leads to waste in two areas: first, a reduction of the potential benefits of therapy, and second, the additional cost of treating the avoidable consequent morbidity. A dramatic example of the consequences of noncompliance with the treatment regimen concerns patients who have had organ transplants: life-long immunosuppression is a pre-requisite for good graft function, and noncompliance is often associated with the occurrence of late acute rejection episodes, graft loss, and death. Here it might be assumed that these patients constitute a highly motivated group, and that compliance would be high. Unfortunately, this is not the case: overall noncompliance rates vary from 20 to 50%. There is no systematic and comprehensive review of the literature on noncompliance and its consequences in organ transplant patients to date. This overview includes literature on heart, liver and kidney transplants in adult and paediatric transplant patients and addresses the following issues: preoperative behaviour patterns as predictors of postoperative compliance problems, compliance behaviour after transplantation, noncompliance and its relationship to organ loss and death, retransplantation outcome after graft loss due to noncompliance, reasons for postoperative noncompliance, and ways to promote compliance.
Alefacept (lymphocyte function-associated molecule 3/IgG fusion protein) treatment for atopic eczema
Resumo:
BACKGROUND: Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. METHODS: Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4 degrees C and 50 min of reperfusion at 37 degrees C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. RESULTS: Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm3 (0.61) vs. CE+S: 4 mm3 (0.75); p < 0.05) and the development of atelectases (CE: 342 mm3 (0.90) vs. CE+S: 0 mm3; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm3 (0.39) vs. CE+S: 268 mm3 (0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 microm3(0.10)) and CE+S (481 microm3(0.10)) compared with controls (323 microm3(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05). CONCLUSION: Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.
Resumo:
Mitochondrial volume density (Vv((mt,f))), cristae surface density (Sv((im,mt))), cristae surface area (Sv((im,f))) and citrate synthase (CS) activity were analysed as indicators of thermal acclimation in foot muscle of the limpet, Nacella concinna, and the clam, Laternula elliptica, collected from 4 locations within the Southern Ocean, South Georgia (54 degrees S, N. concinna only), Signy (60 degrees S), Jubany (L. elliptica only -62 degrees S) and Rothera (67 degrees S). Animals were acclimated to 0.0 degrees C whilst a sub-set of N. concinna (South Georgia, Signy and Rothera) and L. elliptica (Rothera) were acclimated to 3.0 degrees C. At 0.0 degrees C N. concinna had higher Vv((mt,f)), Sv((im,mt)), Sv((im,f)) and muscle fibre specific CS activity than L. elliptica which correlated with the more active life style of N. concinna. However, mitochondrial density was very low, 1-2% in both species, suggesting that low temperature compensation of mitochondrial density is not a universal evolutionary response of Antarctic marine ectotherms. Both Sv((im,mt)) and Sv((im,f)) were reduced by warm acclimation of N. concinna. South Georgia N. concinna maintained muscle fibre specific CS activity after acclimation, in contrast to N. concinna from Rothera and Signy and L. elliptica from Rothera, indicating that they have the physiological plasticity to respond to their warmer, more variable thermal environment.