41 resultados para 400-GEV PROTONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3  fb −1 of s √ =8  TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ 23 . Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10 20 protons on target, T2K has fit the energy-dependent ν μ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin 2 (θ 23 ) is 0.514 +0.055 −0.056 (0.511±0.055 ), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm 2 32 =(2.51±0.10)×10 −3   eV 2 /c 4 (inverted hierarchy: Δm 2 13 =(2.48±0.10)×10 −3   eV 2 /c 4 ). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158GeV/c (√s = 6.3, 7.7,8.8, 12.3 and 17.3GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERNSPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus–nucleus and proton–nucleus collisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consistency of an existing reconstructed annual (December–November) temperature series for the Lisbon region (Portugal) from 1600 onwards, based on a European-wide reconstruction, with (1) five local borehole temperature–depth profiles; (2) synthetic temperature– depth profiles, generated from both reconstructed temperatures and two regional paleoclimate simulations in Portugal; (3) instrumental data sources over the twentieth century; and (4) temperature indices from documentary sources during the late Maunder Minimum (1675–1715) is assessed. The low-frequency variability in the reconstructed temperature in Portugal is not entirely consistent with local borehole temperature–depth profiles and with the simulated response of temperature in two regional paleoclimate simulations driven by reconstructions of various climate forcings. Therefore, the existing reconstructed series is calibrated by adjusting its low-frequency variability to the simulations (first-stage adjustment). The annual reconstructed series is then calibrated in its location and scale parameters, using the instrumental series and a linear regression between them (second-stage adjustment). This calibrated series shows clear footprints of the Maunder and Dalton minima, commonly related to changes in solar activity and explosive volcanic eruptions, and a strong recent-past warming, commonly related to human-driven forcing. Lastly, it is also in overall agreement with annual temperature indices over the late Maunder Minimum in Portugal. The series resulting from this post-reconstruction adjustment can be of foremost relevance to improve the current understanding of the driving mechanisms of climate variability in Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mediterranean region has been identified as a global warming hotspot, where future climate impacts are expected to have significant consequences on societal and ecosystem well-being. To put ongoing trends of summer climate into the context of past natural variability, we reconstructed climate from maximum latewood density (MXD) measurements of Pinus heldreichii (1521–2010) and latewood width (LWW) of Pinus nigra (1617–2010) on Mt. Olympus, Greece. Previous research in the northeastern Mediterranean has primarily focused on inter-annual variability, omitting any low-frequency trends. The present study utilizes methods capable of retaining climatically driven long-term behavior of tree growth. The LWW chronology corresponds closely to early summer moisture variability (May–July, r = 0.65, p < 0.001, 1950–2010), whereas the MXD-chronology relates mainly to late summer warmth (July–September, r = 0.64, p < 0.001; 1899–2010). The chronologies show opposing patterns of decadal variability over the twentieth century (r = −0.68, p < 0.001) and confirm the importance of the summer North Atlantic Oscillation (sNAO) for summer climate in the northeastern Mediterranean, with positive sNAO phases inducing cold anomalies and enhanced cloudiness and precipitation. The combined reconstructions document the late twentieth—early twenty-first century warming and drying trend, but indicate generally drier early summer and cooler late summer conditions in the period ~1700–1900 CE. Our findings suggest a potential decoupling between twentieth century atmospheric circulation patterns and pre-industrial climate variability. Furthermore, the range of natural climate variability stretches beyond summer moisture availabilityobserved in recent decades and thus lends credibility to the significant drying trends projected for this region in current Earth System Model simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of HyperKamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW × 10⁷ s integrated proton beam power (corresponding to 1.56 × 10²² protons on target with a 30 GeV proton beam) to a 2.5-degree off-axis neutrino beam, it is expected that the leptonic CP phase δCP can be determined to better than 19 degrees for all possible values of δCP , and CP violation can be established with a statistical significance of more than 3 σ (5 σ) for 76% (58%) of the δCP parameter space. Using both νe appearance and νµ disappearance data, the expected 1σ uncertainty of sin²θ₂₃ is 0.015(0.006) for sin²θ₂₃ = 0.5(0.45).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: Normal Hierarchy: sin²θ₂₃= 0.514+0.055−0.056 and ∆m²_32 = (2.51 ± 0.10) × 10⁻³ eV²/c⁴ Inverted Hierarchy: sin²θ₂₃= 0.511 ± 0.055 and ∆m²_13 = (2.48 ± 0.10) × 10⁻³ eV²/c⁴ The analysis accounts for multi-nucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters, |∆m^2|, sin²θ₂₃, sin²θ₁₃, δCP , and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region δCP = [0.15, 0.83]π for normal hierarchy and δCP = [−0.08, 1.09]π for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes Factor of 2.2. The most probable values and 68% 1D credible intervals for the other oscillation parameters, when reactor data are included, are: sin²θ₂₃= 0.528+0.055−0.038 and |∆m²_32| = (2.51 ± 0.11) × 10⁻³ eV²/c⁴.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T2K reports its first measurements of the parameters governing the disappearance of νµ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic νµ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector SuperKamiokande, 295 km away, where the νµ survival probability is expected to be minimal. Using a dataset corresponding to 4.01×10²⁰ protons on target, 34 fully contained µ-like events were observed. The best-fit oscillation parameters are sin²(θ₂₃) = 0.45 and |∆m^2_32| = 2.51 × 10⁻³ eV² with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 ×10⁻³ eV² respectively. These results are in agreement with existing antineutrino parameter measurements and also with the νµ disappearance parameters measured by T2K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inclusive production of Λ-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158 GeV/c. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and xF are presented. The mean multiplicity was estimated to be 0.120 ± 0.006 (stat.) ± 0.010 (sys.). The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of π±, K±, p, K0s and Λ are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a measurement of the νµ-nucleus inclusive charged current cross section (=σ cc) on ironusing data from exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0◦ to 1.1◦. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σcc(1.1 GeV) = 1.10±0.15 (10^−38cm^2/nucleon), σcc(2.0 GeV) = 2.07±0.27 (10^−38cm^2/nucleon), and σcc(3.3 GeV) = 2.29 ± 0.45 (10^−38cm^2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.