43 resultados para 3-D trunk image analysis
Resumo:
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
Resumo:
Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system’s position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device’s projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.
Resumo:
BackgroundDespite the increasingly higher spatial and contrast resolution of CT, nodular lesions are prone to be missed on chest CT. Tinted lenses increase visual acuity and contrast sensitivity by filtering short wavelength light of solar and artificial origin.PurposeTo test the impact of Gunnar eyewear, image quality (standard versus low dose CT) and nodule location on detectability of lung nodules in CT and to compare their individual influence.Material and MethodsA pre-existing database of CT images of patients with lung nodules >5 mm, scanned with standard does image quality (150 ref mAs/120 kVp) and lower dose/quality (40 ref mAs/120 kVp), was used. Five radiologists read 60 chest CTs twice: once with Gunnar glasses and once without glasses with a 1 month break between. At both read-outs the cases were shown at lower dose or standard dose level to quantify the influence of both variables (eyewear vs. image quality) on nodule sensitivity.ResultsThe sensitivity of CT for lung nodules increased significantly using Gunnar eyewear for two readers and insignificantly for two other readers. Over all, the mean sensitivity of all radiologist raised significantly from 50% to 53%, using the glasses (P value = 0.034). In contrast, sensitivity for lung nodules was not significantly affected by lowering the image quality from 150 to 40 ref mAs. The average sensitivity was 52% at low dose level, that was even 0.7% higher than at standard dose level (P value = 0.40). The strongest impact on sensitivity had the factors readers and nodule location (lung segments).ConclusionSensitivity for lung nodules was significantly enhanced by Gunnar eyewear (+3%), while lower image quality (40 ref mAs) had no impact on nodule sensitivity. Not using the glasses had a bigger impact on sensitivity than lowering the image quality.
Resumo:
The envelope glycoprotein of small ruminant lentiviruses (SRLV) is a major target of the humoral immune response and contains several linear B-cell epitopes. We amplified and sequenced the genomic segment encoding the SU5 antigenic site of the envelope glycoprotein of several SRLV field isolates. With synthetic peptides based on the deduced amino acid sequences of SU5 in an enzyme-linked immunosorbent assay (ELISA), we have (i) proved the immunodominance of this region regardless of its high variability, (ii) defined the epitopes encompassed by SU5, (iii) illustrated the rapid and peculiar kinetics of seroconversion to this antigenic site, and (iv) shown the rapid and strong maturation of the avidity of the anti-SU5 antibody. Finally, we demonstrated the modular diagnostic potential of SU5 peptides. Under Swiss field conditions, the SU5 ELISA was shown to detect the majority of infected animals and, when applied in a molecular epidemiological context, to permit rapid phylogenetic classification of the infecting virus.
Resumo:
PURPOSE: To quantify optical coherence tomography (OCT) images of the central retina in patients with blue-cone monochromatism (BCM) and achromatopsia (ACH) compared with healthy control individuals. METHODS: The study included 15 patients with ACH, 6 with BCM, and 20 control subjects. Diagnosis of BCM and ACH was established by visual acuity testing, morphologic examination, color vision testing, and Ganzfeld ERG recording. OCT images were acquired with the Stratus OCT 3 (Carl Zeiss Meditec AG, Oberkochen, Germany). Foveal OCT images were analyzed by calculating longitudinal reflectivity profiles (LRPs) from scan lines. Profiles were analyzed quantitatively to determine foveal thickness and distances between reflectivity layers. RESULTS: Patients with ACH and BCM had a mean visual acuity of 20/200 and 20/60, respectively. Color vision testing results were characteristic of the diseases. The LRPs of control subjects yielded four peaks (P1-P4), presumably representing the RPE (P1), the ovoid region of the photoreceptors (P2), the external limiting membrane (ELM) (P3), and the internal limiting membrane (P4). In patients with ACH, P2 was absent, but foveal thickness (P1-P4) did not differ significantly from that in the control subjects (187 +/- 20 vs. 192 +/- 14 microm, respectively). The distance from P1 to P3 did not differ significantly (78 +/- 10 vs. 82 +/- 5 microm) between ACH and controls subjects. In patients with BCM, P3 was lacking, and P2 advanced toward P1 compared with the control subjects (32 +/- 6 vs. 48 +/- 4 microm). Foveal thickness (153 +/- 16 microm) was significantly reduced compared with that in control subjects and patients with ACH. CONCLUSIONS: Quantitative OCT image analysis reveals distinct patterns for controls subjects and patients with ACH and BCM, respectively. Quantitative analysis of OCT imaging can be useful in differentiating retinal diseases affecting photoreceptors. Foveal thickness is similar in both normal subjects and patients with ACH but is decreased in patients with BCM.
Resumo:
The range of motion of normal hips and hips with femoroacetabular impingement relative to some specific anatomic reference landmarks is unknown. We therefore described: (1) the range of motion pattern relative to landmarks; (2) the location of the impingement zones in normal and impinging hips; and (3) the influence of surgical débridement on the range of motion. We used a previously developed and validated noninvasive 3-D CT-based method for kinematic hip analysis to compare the range of motion pattern, the location of impingement, and the effect of virtual surgical reconstruction in 28 hips with anterior femoroacetabular impingement and a control group of 33 normal hips. Hips with femoroacetabular impingement had decreased flexion, internal rotation, and abduction. Internal rotation decreased with increasing flexion and adduction. The calculated impingement zones were localized in the anterosuperior quadrant of the acetabulum and were similar in the two groups and in impingement subgroups. The average improvement of internal rotation was 5.4 degrees for pincer hips, 8.5 degrees for cam hips, and 15.7 degrees for mixed impingement. This method helps the surgeon quantify the severity of impingement and choose the appropriate treatment option; it provides a basis for future image-guided surgical reconstruction in femoroacetabular impingement with less invasive techniques.
Resumo:
To analyze the impact of opacities in the optical pathway and image compression of 32-bit raw data to 8-bit jpg images on quantified optical coherence tomography (OCT) image analysis.
Resumo:
Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.
Resumo:
Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). In this chapter, we present an alternative technique that can reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model. Cadaveric studies are conducted to verify the reconstruction accuracy by comparing the surface models reconstructed from a single lateral fluoroscopic image to the ground truth data from 3D CT segmentation. A mean reconstruction error between 0.7 and 1.4 mm was found.
Resumo:
Automated identification of vertebrae from X-ray image(s) is an important step for various medical image computing tasks such as 2D/3D rigid and non-rigid registration. In this chapter we present a graphical model-based solution for automated vertebra identification from X-ray image(s). Our solution does not ask for a training process using training data and has the capability to automatically determine the number of vertebrae visible in the image(s). This is achieved by combining a graphical model-based maximum a posterior probability (MAP) estimate with a mean-shift based clustering. Experiments conducted on simulated X-ray images as well as on a low-dose low quality X-ray spinal image of a scoliotic patient verified its performance.
Resumo:
In this paper, we propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. To detect landmarks, we estimate the displacements from some randomly sampled image patches to the (unknown) landmark positions, and then we integrate these predictions via a voting scheme. Our key contribution is a new algorithm for estimating these displacements. Different from other methods where each image patch independently predicts its displacement, we jointly estimate the displacements from all patches together in a data driven way, by considering not only the training data but also geometric constraints on the test image. The displacements estimation is formulated as a convex optimization problem that can be solved efficiently. Finally, we use the sparse shape composition model as the a priori information to regularize the landmark positions and thus generate the segmented shape contour. We validate our method on X-ray image datasets of three different anatomical structures: complete femur, proximal femur and pelvis. Experiments show that our method is accurate and robust in landmark detection, and, combined with the shape model, gives a better or comparable performance in shape segmentation compared to state-of-the art methods. Finally, a preliminary study using CT data shows the extensibility of our method to 3D data.