32 resultados para 1544
Resumo:
Mutations in the vacuolar–type H+-ATPase B1 subunit gene ATP6V1B1 cause autosomal–recessive distal renal tubular acidosis (dRTA). We previously identified a single-nucleotide polymorphism (SNP) in the human B1 subunit (c.481G.A; p.E161K) that causes greatly diminished pump function in vitro. To investigate the effect of this SNP on urinary acidification, we conducted a genotype-phenotype analysis of recurrent stone formers in theDallas and Bern kidney stone registries. Of 555 patients examined, 32 (5.8%) were heterozygous for the p.E161K SNP, and the remaining 523 (94.2%) carried two wild–type alleles. After adjustment for sex, age, body mass index, and dietary acid and alkali intake, p.E161K SNP carriers had a nonsignificant tendency to higher urinary pH on a random diet (6.31 versus 6.09; P=0.09). Under an instructed low–Ca and low–Na diet, urinary pH was higher in p.E161K SNP carriers (6.56 versus 6.01; P,0.01). Kidney stones of p.E161K carriers were more likely to contain calcium phosphate than stones of wild-type patients. In acute NH4Cl loading, p.E161K carriers displayed a higher trough urinary pH (5.34 versus 4.89; P=0.01) than wild-type patients. Overall, 14.6% of wild-type patients and 52.4% of p.E161K carriers were unable to acidify their urine below pH 5.3 and thus, can be considered to have incomplete dRTA. In summary, our data indicate that recurrent stone formers with the vacuolar H+-ATPase B1 subunit p.E161K SNP exhibit a urinary acidification deficit with an increased prevalence of calcium phosphate– containing kidney stones. The burden of E161K heterozygosity may be a forme fruste of dRTA.
Resumo:
Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.