32 resultados para 1 Sigma error, austral
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.
Resumo:
Glycogen is a major substrate in energy metabolism and particularly important to prevent hypoglycemia in pathologies of glucose homeostasis such as type 1 diabetes mellitus (T1DM). (13) C-MRS is increasingly used to determine glycogen in skeletal muscle and liver non-invasively; however, the low signal-to-noise ratio leads to long acquisition times, particularly when glycogen levels are determined before and after interventions. In order to ease the requirements for the subjects and to avoid systematic effects of the lengthy examination, we evaluated if a standardized preparation period would allow us to shift the baseline (pre-intervention) experiments to a preceding day. Based on natural abundance (13) C-MRS on a clinical 3 T MR system the present study investigated the test-retest reliability of glycogen measurements in patients with T1DM and matched controls (n = 10 each group) in quadriceps muscle and liver. Prior to the MR examination, participants followed a standardized diet and avoided strenuous exercise for two days. The average coefficient of variation (CV) of myocellular glycogen levels was 9.7% in patients with T1DM compared with 6.6% in controls after a 2 week period, while hepatic glycogen variability was 13.3% in patients with T1DM and 14.6% in controls. For comparison, a single-session test-retest variability in four healthy volunteers resulted in 9.5% for skeletal muscle and 14.3% for liver. Glycogen levels in muscle and liver were not statistically different between test and retest, except for hepatic glycogen, which decreased in T1DM patients in the retest examination, but without an increase of the group distribution. Since the CVs of glycogen levels determined in a "single session" versus "within weeks" are comparable, we conclude that the major source of uncertainty is the methodological error and that physiological variations can be minimized by a pre-study standardization. For hepatic glycogen examinations, familiarization sessions (MR and potentially strenuous interventions) are recommended. Copyright © 2016 John Wiley & Sons, Ltd.