35 resultados para 020501 Classical and Physical Optics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To investigate the regulatory effect of tumour necrosis factor (TNF) blockade with infliximab on the distribution of peripheral blood monocyte subpopulations in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). METHODS Purified CD11b+CD14+ monocytes from 5 patients with RA and 5 AS were analysed ex vivo before and after infliximab treatment by flow cytometry for CD16, CD163, CD11b, C-C chemokine receptor type 2 (CCR2) and CXC chemokine receptor 4 (CXCR4) at baseline and at days 2, 14, 84 and 168 after the first infliximab administration. Serum levels of the stromal cell-derived factor (SDF)-1 and monocyte chemotactic peptide (MCP)-1 at different time points were measured in either patient group before and on infliximab treatment. RESULTS Anti-TNF treatment with infliximab led to a significant increase of circulating CD11b+ non-classical and a concomitantly decrease of CD11b+ classical monocytes, to a decline in SDF-1 levels and reduced expression of CCR2 and CXCR4 on non-classical monocyte subpopulation. CONCLUSIONS Our study shows, that TNFα blockade by infliximab resulted in a dichotomy of the regulation of classical and non-classical monocytes that might have substantial impact on inhibition of osteoclastogenesis and of subsequent juxta-articular bone destruction and systemic bone loss in RA and AS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranging and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1.3m for mean accuracy and 2.2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a ’control valve’ on ocean–atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air–sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean’s ’organic carbon pump’ has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Circulating progenitor cells have been implicated with maintaining vascular integrity. Low counts are found in adults with high cardiovascular risk and are associated with impaired endothelial function. It remains unknown whether psychosocial risk factors are independently related to counts of circulating progenitor cells. METHODS: We investigated a random sample of 468 adult industrial employees (mean age 41.2 years, 89% men) of Caucasian origin. Cardiovascular risk factors (blood pressure, LDL, HDL and C-reactive protein), health behavior (smoking, alcohol and physical exercise), psychological variables (effort-reward imbalance social support, negative affectivity) and interaction terms served as predictors of circulating progenitor cells (CD34+ CD31dim) as enumerated by flow-cytometry. FINDINGS: Psychosocial variables were independently associated with progenitor cell counts. The association with risk factors increased with age (explained variance in 18-36 year olds R(2)=0.17, p=0.55; age 36.1-46 R(2)=0.32, p=0.001; age>46 R(2)=0.27, p<0.001). Data revealed a shift from a larger association between behavioral and psychosocial variables and cell counts to a stronger association between biological variables and cell counts in older individuals. A significant interaction was observed between smoking and effort-reward imbalance in middle-aged subjects, those with both risk factors present had lower cell counts. In older employees, the interaction between biological risk factors and smoking was related to lower cell counts. INTERPRETATION: In working middle-aged and older men, psychosocial risk factors were related to circulating counts of progenitor cells. Smoking interacted negatively with psychosocial risk factors (middle-aged men) or with biological risk factors (older employees).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.