413 resultados para Axel Honneth
Resumo:
Millennial to orbital-scale rainfall changes in the Mediterranean region and corresponding variations in vegetation patterns were the result of large-scale atmospheric reorganizations. In spite of recent efforts to reconstruct this variability using a range of proxy archives, the underlying physical mechanisms have remained elusive. Through the analysis of a new high-resolution sedimentary section from Lake Van (Turkey) along with climate modeling experiments, we identify massive droughts in the Eastern Med- iterranean for the past four glacial cycles, which have a pervasive link with known intervals of enhanced North Atlantic glacial iceberg calving, weaker Atlantic Meridional Overturning Circulation and Dansgaard-Oeschger cold conditions. On orbital timescales, the topographic effect of large Northern Hemisphere ice sheets and periods with minimum insolation seasonality further exacerbated drought intensities by suppressing both summer and winter precipitation.
Resumo:
We present the first analytical approach to demonstrate the in situ imaging of metabolites from formalin-fixed, paraffin-embedded (FFPE) human tissue samples. Using high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR MSI), we conducted a proof-of-principle experiment comparing metabolite measurements from FFPE and fresh frozen tissue sections, and found an overlap of 72% amongst 1700 m/z species. In particular, we observed conservation of biomedically relevant information at the metabolite level in FFPE tissues. In biomedical applications, we analysed tissues from 350 different cancer patients and were able to discriminate between normal and tumour tissues, and different tumours from the same organ, and found an independent prognostic factor for patient survival. This study demonstrates the ability to measure metabolites in FFPE tissues using MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Our approach is a major technical, histochemical, and clinicopathological advance that highlights the potential for investigating diseases in archived FFPE tissues.
Resumo:
BACKGROUND NOTCH signaling can exert oncogenic or tumor suppressive functions and can contribute to chemotherapy resistance in cancer. In this study, we aimed to clarify the clinicopathological significance and the prognostic and predictive value of NOTCH1 and NOTCH2 expression in gastric cancer (GC). METHODS NOTCH1 and NOTCH2 expression was determined immunohistochemically in 142 primarily resected GCs using tissue microarrays and in 84 pretherapeutic biopsies from patients treated by neoadjuvant chemotherapy. The results were correlated with survival, response to therapy, and clinico-pathological features. RESULTS Primarily resected patients with NOTCH1-negative tumors demonstrated worse survival. High NOTCH1 expression was associated with early-stage tumors and with significantly increased survival in this subgroup. Higher NOTCH2 expression was associated with early-stage and intestinal-type tumors and with better survival in the subgroup of intestinal-type tumors. In pretherapeutic biopsies, higher NOTCH1 and NOTCH2 expression was more frequent in non-responding patients, but these differences were statistically not significant. CONCLUSION Our findings suggested that, in particular, NOTCH1 expression indicated good prognosis in GC. The close relationship of high NOTCH1 and NOTCH2 expression with early tumor stages may indicate a tumor-suppressive role of NOTCH signaling in GC. The role of NOTCH1 and NOTCH2 in neoadjuvantly treated GC is limited.
Resumo:
Twenty-five public supply wells throughout the hydrogeologically diverse region of Scania, southern Sweden are subjected to environmental tracer analysis (³H–³He,⁴He, CFCs, SF₆ and for one well only also ⁸⁵Kr and ³⁹Ar) to study well and aquifer vulnerability and evaluate possibilities of groundwater age distribution assessment. We find CFC and SF₆ concentrations well above solubility equilibrium with modern atmosphere, indicating local contamination, as well as indications of CFC degradation. The tracer-specific complications considerably constrain possibilities for sound quantitative regional ground- water age distribution assessment and demonstrate the importance of initial qualitative assessment of tracer-specific reliability, as well a need for additional, complementary tracers (e.g. ⁸⁵Kr,³⁹Ar and potentially also ¹⁴C). Lumped parameter modelling yields credible age distribution assessments for representative wells in four type aquifers. Pollution vulnerability of the aquifer types was based on the selected LPM models and qualitative age characterisation. Most vulnerable are unconfined dual porosity and fractured bedrock aquifers, due to a large component of very young groundwater. Unconfined sedimentary aquifers are vulnerable due to young groundwater and a small pre-modern component. Less vulnerable are semi-confined sedimentary or dual-porosity aquifers, due to older age of the modern component and a larger pre-modern component. Confined aquifers appear least vulnerable, due an entirely pre-modern groundwater age distribution (recharged before 1963). Tracer complications aside, environmental tracer analyses and lumped parameter modelling aid in vulnerability assessment and protection of regional groundwater resources.
Resumo:
OBJECTIVES The aim of the Cavalier trial was to evaluate the safety and performance of the Perceval sutureless aortic valve in patients undergoing aortic valve replacement (AVR). We report the 30-day clinical and haemodynamic outcomes from the largest study cohort with a sutureless valve. METHODS From February 2010 to September 2013, 658 consecutive patients (mean age 77.8 years; 64.4% females; mean logistic EuroSCORE 10.2%) underwent AVR in 25 European Centres. Isolated AVRs were performed in 451 (68.5%) patients with a less invasive approach in 219 (33.3%) cases. Of the total, 40.0% were octogenarians. Congenital bicuspid aortic valve was considered an exclusion criterion. RESULTS Implantation was successful in 628 patients (95.4%). In isolated AVR through sternotomy, the mean cross-clamp time and the cardiopulmonary bypass (CPB) time were 32.6 and 53.7 min, and with the less invasive approach 38.8 and 64.5 min, respectively. The 30-day overall and valve-related mortality rates were 3.7 and 0.5%, respectively. Valve explants, stroke and endocarditis occurred in 0.6, 2.1 and in 0.1% of cases, respectively. Preoperative mean and peak pressure gradients decreased from 44.8 and 73.24 mmHg to 10.24 and 19.27 mmHg at discharge, respectively. The mean effective orifice area improved from 0.72 to 1.46 cm(2). CONCLUSIONS The current 30-day results show that the Perceval valve is safe (favourable haemodynamic effect and low complication rate), and can be implanted with a fast and reproducible technique after a short learning period. Short cross-clamp and CPB times were achieved in both isolated and combined procedures. The Perceval valve represents a promising alternative to biological AVR, especially with a less invasive approach and in older patients.
Resumo:
In this work we study the Zeeman effect on stratospheric O₂ using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O₂ energy states, which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz. Both a fixed and a rotating mirror were incorporated into the TEMPERA (TEMPERature RAdiometer) in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. Moreover, a high-resolution spectrometer (1 kHz) was used in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements. The measured spectra showed a clear polarized signature when the observational angles were changed, evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The results suggest some interesting new aspects for research of the upper atmosphere.
Resumo:
Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric Composition Change) ozone radiometer measuring at Bern.