404 resultados para Atlas Farnese.
Resumo:
The prompt and non-prompt production cross-sections for the χc1 and χc2 charmonium states are measured in pp collisions at √s = 7TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χc states are reconstructed through the radiative decay χc → J/ψγ (with J/ψ → μ+μ−) where photons are reconstructed from γ → e+e− conversions. The production rate of the χc2 state relative to the χc1 state is measured for prompt and non-prompt χc as a function of J/ψ transverse momentum. The prompt χc cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χc decays. The fractions of χc1 and χc2 produced in b-hadron decays are also measured.
Resumo:
This paper presents a study of the performance of the muon reconstruction in the analysis of proton–proton collisions at √s = 7TeV at theLHC, recorded by the ATLAS detector in 2010. This performance is described in terms of reconstruction and isolation efficiencies and momentum resolutions for different classes of reconstructed muons. The results are obtained from an analysis of J/ψ meson and Z boson decays to dimuons, reconstructed from a data sample corresponding to an integrated luminosity of 40 pb−1. The measured performance is compared to Monte Carlo predictions and deviations from the predicted performance are discussed.
Resumo:
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons (e or μ) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb−1 of ps = 8TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.
Resumo:
Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton–proton collision data collected in 2011 at √s = 7 TeV and corresponding to an integrated luminosity of 4.7 fb−1. Tag-and-probe methods using events with leptonic decays of W and Z bosons and J/ψ mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.
Resumo:
The differential cross section for the process Z/√ → ℓℓ (ℓ = e, μ) as a function of dilepton invariant mass is measured in pp collisions at ps = 7TeV at the LHC using the ATLAS detector. The measurement is performed in the e and μ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb−1 collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb−1 of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leadingorder QCD calculations, unless the latter are matched to a parton shower calculation.
Resumo:
A measurement of the parity-violating decay asymmetry parameter, αb , and the helicity amplitudes for the decay Λ 0 b →J/ψ(μ + μ − )Λ 0 (pπ − ) is reported. The analysis is based on 1400 Λ 0 b and Λ ¯ 0 b baryons selected in 4.6 fb −1 of proton–proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. By combining the Λ 0 b and Λ ¯ 0 b samples under the assumption of CP conservation, the value of α b is measured to be 0.30±0.16(stat)±0.06(syst) . This measurement provides a test of theoretical models based on perturbative QCD or heavy-quark effective theory.
Resumo:
search is presented for production of dark-matter particles recoiling against a leptonically decaying Z boson in 20.3 fb−1 of pp collisions at √s=8 TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely charged electrons or muons consistent with the decay of a Z boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark-matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with Z bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle.
Resumo:
A search is performed for flavour-changing neutral currents in the decay of a top quark to an up-type (c, u) quark and a Higgs boson, where the Higgs boson decays to two photons. The proton-proton collision data set used corresponds to 4.7 fb−1 at √s = 7TeV and 20.3 fb−1 at √s = 8TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for in which one top quark decays to qH and the other decays to bW. Both the hadronic and the leptonic decay modes of the W boson are used. No significant signal is observed and an upper limit is set on the t → qH branching ratio of 0.79% at the 95% confidence level. The corresponding limit on the tqH coupling combination qλ2t cH + λ2t uH is 0.17.
Resumo:
Measurements of four-lepton (4ℓ , ℓ=e,μ ) production cross sections at the Z resonance in pp collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass regions m ℓ + ℓ − >5 GeV and 80
Resumo:
Searches for the electroweak production of charginos, neutralinos and sleptons in final states characterized by the presence of two leptons (electrons and muons) and missing transverse momentum are performed using 20.3 fb−1 of proton-proton collision data at ps = 8TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. Limits are set on the masses of the lightest chargino, next-to-lightest neutralino and sleptons for different lightest-neutralino mass hypotheses in simplified models. Results are also interpreted in various scenarios of the phenomenological Minimal Supersymmetric Standard Model.
Resumo:
A search is presented for direct top squark pair production using events with at least two leptons including a same-flavour opposite-sign pair with invariant mass consistent with the Z boson mass, jets tagged as originating from b-quarks and missing transverse momentum. The analysis is performed with proton–proton collision data at √ s = 8 TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of 20.3 fb−1. No excess beyond the Standard Model expectation is observed. Interpretations of the results are provided in models based on the direct pair production of the heavier top squark state (˜t2) followed by the decay to the lighter top squark state (˜t1) via ˜t2 → Z ˜t1, and for ˜t1 pair production in natural gaugemediated supersymmetry breaking scenarios where the neutralino (˜χ 01 ) is the next-to-lightest supersymmetric particle and decays producing a Z boson and a gravitino ( ˜G ) via the ˜χ 01→ Z ˜G process.
Resumo:
A search is presented for direct top-squark pair production in final states with two leptons (electrons or muons) of opposite charge using 20.3 fb−1 of pp collision data at ps = 8TeV, collected by the ATLAS experiment at the Large Hadron Collider in 2012. No excess over the Standard Model expectation is found. The results are interpreted under the separate assumptions (i) that the top squark decays to a b-quark in addition to an on-shell chargino whose decay occurs via a real or virtual W boson, or (ii) that the top squark decays to a t-quark and the lightest neutralino. A top squark with a mass between 150 GeV and 445 GeV decaying to a b-quark and an on-shell chargino is excluded at 95% confidence level for a top squark mass equal to the chargino mass plus 10 GeV, in the case of a 1 GeV lightest neutralino. Top squarks with masses between 215 (90) GeV and 530 (170) GeV decaying to an on-shell (off-shell) t-quark and a neutralino are excluded at 95% confidence level for a 1 GeV neutralino.
Resumo:
A measurement of event-plane correlations involving two or three event planes of different order is presented as a function of centrality for 7 μb −1 Pb+Pb collision data at √s NN =2.76 TeV, recorded by the ATLAS experiment at the Large Hadron Collider. Fourteen correlators are measured using a standard event-plane method and a scalar-product method, and the latter method is found to give a systematically larger correlation signal. Several different trends in the centrality dependence of these correlators are observed. These trends are not reproduced by predictions based on the Glauber model, which includes only the correlations from the collision geometry in the initial state. Calculations that include the final-state collective dynamics are able to describe qualitatively, and in some cases also quantitatively, the centrality dependence of the measured correlators. These observations suggest that both the fluctuations in the initial geometry and the nonlinear mixing between different harmonics in the final state are important for creating these correlations in momentum space.
Resumo:
A search for the direct production of charginos and neutralinos in final states with three leptons and missing transverse momentum is presented. The analysis is based on 20.3 fb−1 of √s = 8TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations and limits are set in R-parity-conserving phenomenological Minimal Supersymmetric Standard Models and in simplified supersymmetric models, significantly extending previous results. For simplified supersymmetric models of direct chargino (˜χ±1 ) and next-to-lightest neutralino (˜χ02) production with decays to lightest neutralino(˜χ01) via either all three generations of sleptons, staus only, gauge bosons, or Higgs bosons, ˜χ±1 and ˜χ02 masses are excluded up to 700GeV, 380GeV, 345GeV, or 148GeV respectively, for a massless ˜χ01.
Resumo:
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at ps = 7TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio ơ(W++c)/ơ(W−+c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s–s quark asymmetry.