383 resultados para Bernd Becher
Resumo:
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
Resumo:
OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.
Resumo:
BACKGROUND Hemodialysis patients are high absorbers of intestinal cholesterol; they benefit less than other patient groups from statin therapy, which inhibits cholesterol synthesis. OBJECTIVES This study sought to investigate whether the individual cholesterol absorption rate affects atorvastatin's effectiveness to reduce cardiovascular risk in hemodialysis patients. METHODS This post-hoc analysis included 1,030 participants in the German Diabetes and Dialysis Study (4D) who were randomized to either 20 mg of atorvastatin (n = 519) or placebo (n = 511). The primary endpoint was a composite of major cardiovascular events. Secondary endpoints included all-cause mortality and all cardiac events. Tertiles of the cholestanol-to-cholesterol ratio, which is an established biomarker of cholesterol absorption, were used to identify high and low cholesterol absorbers. RESULTS A total of 454 primary endpoints occurred. On multivariate time-to-event analyses, the interaction term between tertiles and treatment with atorvastatin was significantly associated with the risk of reaching the primary endpoint. Stratified analysis by cholestanol-to-cholesterol ratio tertiles confirmed this effect modification: atorvastatin reduced the risk of reaching the primary endpoint in the first tertile (hazard ratio [HR]: 0.72; p = 0.049), but not the second (HR: 0.79; p = 0.225) or third tertiles (HR: 1.21; p = 0.287). Atorvastatin consistently significantly reduced all-cause mortality and the risk of all cardiac events in only the first tertile. CONCLUSIONS Intestinal cholesterol absorption, as reflected by cholestanol-to-cholesterol ratios, predicts the effectiveness of atorvastatin to reduce cardiovascular risk in hemodialysis patients. Those with low cholesterol absorption appear to benefit from treatment with atorvastatin, whereas those with high absorption do not benefit.
Resumo:
The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant’s highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mg g−1 range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.
Resumo:
Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.
Resumo:
The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell-specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8(+) T cells from T(ΔGpx4/ΔGpx4) mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8(+) and CD4(+) T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity.
Resumo:
Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC. This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-specialist researchers alike as it requires only basic knowledge of perturbative QCD.
Resumo:
In electroweak-boson production processes with a jet veto, higher-order corrections are enhanced by logarithms of the veto scale over the invariant mass of the boson system. In this paper, we resum these Sudakov logarithms at next-to-next-to-leading logarithmic accuracy and match our predictions to next-to-leading-order (NLO) fixed-order results. We perform the calculation in an automated way, for arbitrary electroweak final states and in the presence of kinematic cuts on the leptons produced in the decays of the electroweak bosons. The resummation is based on a factorization theorem for the cross sections into hard functions, which encode the virtual corrections to the boson production process, and beam functions, which describe the low-pT emissions collinear to the beams. The one-loop hard functions for arbitrary processes are calculated using the MadGraph5_aMC@NLO framework, while the beam functions are process independent. We perform the resummation for a variety of processes, in particular for W+W− pair production followed by leptonic decays of the W bosons.
Resumo:
We analyze transverse thrust in the framework of Soft Collinear Effective Theory and obtain a factorized expression for the cross section that permits resummation of terms enhanced in the dijet limit to arbitrary accuracy. The factorization theorem for this hadron-collider event-shape variable involves collinear emissions at different virtualities and suffers from a collinear anomaly. We compute all its ingredients at the one-loop order, and show that the two-loop input for next-to-next-to-leading logarithmic accuracy can be extracted numerically, from existing fixed-order codes.
Resumo:
Die Kathedrale von Santiago de Compostela, als Ziel und Höhepunkt der Pilgerwege zum Jakobsgrab, darf heute mehr denn je Aufmerksamkeit beanspruchen, nicht nur als Ziel des Jakobsweges, sondern vor allem als architektonische und kulturgeschichtliche Quelle. Das mehrjährige Forschungsprojekt von Bernd Nicolai, Universität Bern und Klaus Rheidt, Universität Cottbus, 'Die Kathedrale von Santiago de Compostela - Gestalt, Funktion und Programm', das den Bau und seinen architektur- und kunstgeschichtlichen Kontext von Grund auf neu untersucht, legt hier eine Zwischenbilanz vor. Der Band präsentiert erstmalig Ergebnisse zu Bauverlauf und Ausstattung auf der Basis einer neuen Bauforschung, Baugeschichte und Quellenanalyse und konfrontiert sie mit aktuellen internationalen Forschungen in Spanien, den USA, der Schweiz, Deutschland, England und Frankreich zum Themenbereich der Pilgerstraßenarchitektur und -skulptur.
Resumo:
BACKGROUND Although regenerative treatment options are available, periodontal regeneration is still regarded as insufficient and unpredictable. AIM This review article provides scientific background information on the animated 3D film Cell-to-Cell Communication - Periodontal Regeneration. RESULTS Periodontal regeneration is understood as a recapitulation of embryonic mechanisms. Therefore, a thorough understanding of cellular and molecular mechanisms regulating normal tooth root development is imperative to improve existing and develop new periodontal regenerative therapies. However, compared to tooth crown and earlier stages of tooth development, much less is known about the development of the tooth root. The formation of root cementum is considered the critical element in periodontal regeneration. Therefore, much research in recent years has focused on the origin and differentiation of cementoblasts. Evidence is accumulating that the Hertwig's epithelial root sheath (HERS) has a pivotal role in root formation and cementogenesis. Traditionally, ectomesenchymal cells in the dental follicle were thought to differentiate into cementoblasts. According to an alternative theory, however, cementoblasts originate from the HERS. What happens when the periodontal attachment system is traumatically compromised? Minor mechanical insults to the periodontium may spontaneously heal, and the tissues can structurally and functionally be restored. But what happens to the periodontium in case of periodontitis, an infectious disease, after periodontal treatment? A non-regenerative treatment of periodontitis normally results in periodontal repair (i.e., the formation of a long junctional epithelium) rather than regeneration. Thus, a regenerative treatment is indicated to restore the original architecture and function of the periodontium. Guided tissue regeneration or enamel matrix proteins are such regenerative therapies, but further improvement is required. As remnants of HERS persist as epithelial cell rests of Malassez in the periodontal ligament, these epithelial cells are regarded as a stem cell niche that can give rise to new cementoblasts. Enamel matrix proteins and members of the transforming growth factor beta (TGF-ß) superfamily have been implicated in cementoblast differentiation. CONCLUSION A better knowledge of cell-to-cell communication leading to cementoblast differentiation may be used to develop improved regenerative therapies to reconstitute periodontal tissues that were lost due to periodontitis.