408 resultados para Alpine deglaciation
Resumo:
The protection and sustainable management of forest carbon stocks, particularly in the tropics, is a key factor in the mitigation of global change effects. However, our knowledge of how land use and elevation affect carbon stocks in tropical ecosystems is very limited. We compared aboveground biomass of trees, shrubs and herbs for eleven natural and human-influenced habitat types occurring over a wide elevation gradient (866–4550 m) at the world's highest solitary mountain, Mount Kilimanjaro. Thanks to the enormous elevation gradient, we covered important natural habitat types, e.g., savanna woodlands, montane rainforest and afro-alpine vegetation, as well as important land-use types such as maize fields, grasslands, traditional home gardens, coffee plantations and selectively logged forest. To assess tree and shrub biomass with pantropical allometric equations, we measured tree height, diameter at breast height and wood density and to assess herbaceous biomass, we sampled destructively. Among natural habitats, tree biomass was highest at intermediate elevation in the montane zone (340 Mg ha−1), shrub biomass declined linearly from 7 Mg ha−1 at 900 m to zero above 4000 m, and, inverse to tree biomass, herbaceous biomass was lower at mid-elevations (1 Mg ha−1) than in savannas (900 m, 3 Mg ha−1) or alpine vegetation (above 4000 m, 6 Mg ha−1). While the various land-use types dramatically decreased woody biomass at all elevations, though to various degrees, herbaceous biomass was typically increased. Our study highlights tropical montane forest biomass as important aboveground carbon stock and quantifies the extent of the strong aboveground biomass reductions by the major land-use types, common to East Africa. Further, it shows that elevation and land use differently affect different vegetation strata, and thus the matrix for other organisms.
Resumo:
– Swiss forests experience strong impacts under the CH2011 scenarios, partly even for the low greenhouse gas scenario RCP3PD. Negative impacts prevail in low-elevation forests, whereas mostly positive impacts are expected in high-elevation forests. – Major changes in the distribution of the two most important tree species, Norway spruce and European beech, are expected. Growth conditions for spruce improve in a broad range of scenarios at presently cool high-elevation sites with plentiful precipitation, but in the case of strong warming (A1B and A2) spruce and beech are at risk in large parts of the Swiss Plateau. – High elevation forests that are temperature-limited will show little change in species composition but an increase in biomass. In contrast, forests at low elevations in warm-dry inner-Alpine valleys are sensitive to even moderate warming and may no longer sustain current biomass and species. – Timber production potential, carbon storage, and protection from avalanches and rockfall react differently to climate change, with an overall tendency to deteriorate at low elevations, and improve at high elevations. – Climate change will affect forests also indirectly, e.g., by increasing the risk of infestation by spruce bark beetles, which will profit from an extended flight period and will produce more generations per year.
Resumo:
Monazite-bearing Alpine clefts located in the Sonnblick region of the eastern Tauern Window, Austria, are oriented perpendicular to the foliation and lineation. Ion probe (SIMS) Th–Pb and U–Pb dating of four cleft monazites yields crystallization ages of different growth domains and aggregate regions ranging from 18.99 ± 0.51 to 15.00 ± 0.51 Ma. The crystallization ages obtained are overlapping or slightly younger than zircon fission track ages but older than zircon (U–Th)/He cooling ages from the same area. This constrains cleft monazite crystallization in this area to *300–200 �C. LA-ICP-MS data of dated hydrothermal monazites indicate that in graphite-bearing, reduced host lithologies, cleft monazite is poor in As and has higher La/Yb values and U concentrations, whereas in oxidised host rocks opposite trends are observed. Monazites show negative Eu anomalies and variable La/Yb values ranging from 520 to 6050. The positive correlation between Ca and Sr concentration indicates dissolution of plagioclase or carbonates as the source of these elements. The data show that early exhumation and cleft formation in the Tauern is related to metamorphic dome formation caused by the collision of the Adriatic with the European plate and that monazite crystallization in the clefts occurred later. Our data also demonstrate that hydrothermal monazite ages offer great potential in helping to constrain the chronology of exhumation in collisional orogens.
Resumo:
Ecological research and monitoring of lacustrine ecosystems often requires a whole-lake assessment of fish communities. Gillnet sampling offers an efficient means of estimating abundance, biomass and fish community composition. However the choice of gillnet sampling protocol may influence lake characterization via physical properties of the nets and allocation of sampling effort between littoral, benthic and pelagic habitats. This paper compares two commonly used, whole-lake sampling protocols applied across 17 prealpine, subalpine and alpine European lakes ranging widely in size, depth and altitude to determine their relative strength for research and management applications. Effort-corrected estimates of abundance, biomass and species richness were correlated between the protocols and both distinguished the trout-dominated alpine communities from subalpine and prealpine lakes dominated by whitefish and perch. A considerable amount of variance remained unexplained between the two protocols however, which seemed to correspond with differences in the proportion of effort among benthic and pelagic habitats. We suggest that both the European standard (CEN) and vertical (VERT) netting protocols are suitable for assessing ecological status and monitoring changes in lake fish communities through time. However the details of each protocol should be kept in mind when comparing fish communities between lakes. Mesh sizes used in CEN nets produce a more even size frequency distribution, suggesting that this protocol is most appropriate for assessing size structure of fish assemblages. The high proportion of netting effort in benthic habitats shallower than 70 m depth under the CEN protocol means that, particularly in larger lakes, outcomes will be disproportionately influenced by the ecological condition of this habitat. The VERT protocol presumably provides a more accurate estimate of whole-lake CPUE and community composition because effort, in terms of net area, is more evenly distributed across the entire volume of the lake. This is particularly important in large and deep lakes where pelagic habitats occupy a high proportion of the lake volume.
Resumo:
Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+ 40%) and irrigation (+ 25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues.
Resumo:
Pressure–Temperature–time (P–T–t) estimates of the syn-kinematic strain at the peak-pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan-de-Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn-kinematically in a shear zone indicating top-to-the-N motion. By combining X-ray mapping with multi-equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–T–t estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.
Resumo:
The Swiss Deckenschotter (“cover gravels”) is the oldest Quaternary units in the northern Swiss Alpine Foreland. They are a succession of glaciofluvial gravel layers intercalated with glacial and/or overbank deposits. This lithostratigraphic sequence is called Deckenschotter because it “covers” Molasse or Mesozoic bedrock and forms mesa-type hill-tops. Deckenschotter occurs both within and beyond the extent of the Last Glacial Maximum glaciers. The Swiss Deckenschotter consist of two sub-units: Höhere (Higher) and Tiefere (Lower) Deckenschotter. Although the Höhere Deckenschotter sub-unit (HDS) is topographically higher than the Tiefere Deckenschotter, it is older. The only available age for the Swiss Deckenschotter is 2.5–1.8 Ma based on mammal remains found in HDS at the Irchel site. In this study, we present an exposure age for the topographically lowest HDS, calculated from a cosmogenic 10Be depth-profile. Our results show that the first phase of the Deckenschotter glaciations in the Swiss Alps terminated at least 1,020+80−120 ka ago, which is indicated by a significant fluvial incision. This line of evidence seems to be close to synchronous with the beginning of the Mid-Pleistocene Revolution, when the frequency of the glacial-interglacial cyclicity changed from 41 to 100 ka and the amplitude from low to high, between marine isotope stages 23 and 22.
Resumo:
This study reviews and synthesizes the present knowledge on the Sesia–Dent Blanche nappes, the highest tectonic elements in the Western Alps (Switzerland and Italy), which comprise pieces of pre-Alpine basement and Mesozoic cover. All of the available data are integrated in a crustal-scale kinematic model with the aim to reconstruct the Alpine tectono-metamorphic evolution of the Sesia–Dent Blanche nappes. Although major uncertainties remain in the pre-Alpine geometry, the basement and cover sequences of the Sesia–Dent Blanche nappes are seen as part of a thinned continental crust derived from the Adriatic margin. The earliest stages of the Alpine evolution are interpreted as recording late Cretaceous subduction of the Adria-derived Sesia–Dent Blanche nappes below the South-Alpine domain. During this subduction, several sheets of crustal material were stacked and separated by shear zones that rework remnants of their Mesozoic cover. The recently described Roisan-Cignana Shear Zone of the Dent Blanche Tectonic System represents such a shear zone, indicating that the Sesia–Dent Blanche nappes represent a stack of several individual nappes. During the subsequent subduction of the Piemonte–Liguria Ocean large-scale folding of the nappe stack (including the Roisan-Cignana Shear Zone) took place under greenschist facies conditions, which indicates partial exhumation of the Dent Blanche Tectonic System. The entrance of the Briançonnais micro-continent within the subduction zone led to a drastic change in the deformation pattern of the Alpine belt, with rapid exhumation of the eclogite-facies ophiolite bearing units and thrust propagation towards the foreland. Slab breakoff probably was responsible for allowing partial melting in the mantle and Oligocene intrusions into the most internal parts of the Sesia–Dent Blanche nappes. Finally, indentation of the Adriatic plate into the orogenic wedge resulted in the formation of the Vanzone back-fold, which marks the end of the pervasive ductile deformation within the Sesia–Dent Blanche nappes during the earliest Miocene.
Resumo:
The Dent Blanche Tectonic System (DBTS) is a composite thrust sheet derived from the previously thinned passive Adriatic continental margin. A kilometric high-strain zone, the Roisan-Cignana Shear Zone (RCSZ) defines the major tectonic boundary within the DBTS and separates it into two subunits, the Dent Blanche s.s. nappe to the northwest and the Mont Mary nappe to the southeast. Within this shear zone, tectonic slices of Mesozoic and pre-Alpine meta-sediments became amalgamated with continental basement rocks of the Adriatic margin. The occurrence of high pressure assemblages along the contact between these tectonic slices indicates that the amalgamation occurred prior to or during the subduction process, at an early stage of the Alpine orogenic cycle. Detailed mapping, petrographic and structural analysis show that the Roisan-Cignana Shear Zone results from several superimposed Alpine structural and metamorphic stages. Subduction of the continental fragments is recorded by blueschist-facies deformation, whereas the Alpine collision is reflected by a greenschist facies overprint associated with the development of large-scale open folds. The postnappe evolution comprises the development of low-angle brittle faults, followed by large-scale folding (Vanzone phase) and finally brittle extensional faults. The RCSZ shows that fragments of continental crust had been torn off the passive continental margin prior to continental collision, thus recording the entire history of the orogenic cycle. The role of preceding Permo-Triassic lithospheric thinning, Jurassic rifting, and ablative subduction processes in controlling the removal of crustal fragments from the reactivated passive continental margin is discussed. Results of this study constrain the temporal sequence of the tectono-metamorphic processes involved in the assembly of the DBTS, but they also show limits on the interpretation. In particular it remains difficult to judge to what extent precollisional rifting at the Adriatic continental margin preconditioned the efficiency of convergent processes, i.e. accretion, subduction, and orogenic exhumation.
Resumo:
The spectrum characteristic of the EMC ranges from eclogites (containing omphacite and/or jadeite, garnet, phengite, glaucophane, zoisite, chloritoid, rutile) to phengite schists, calcschists, and marbles, as well as a variety of orthogneisses. Despite the intense polyphase deformation and HP-metamorphic recrystallization, it is possible in some locations to recognize pre-Alpine characteristics in some of the protoliths. For instance, two types of felsic orthogneiss can be distinguished in the Aosta Valley, one derived from Permian granitoids (with local preservation of intrusive contacts, magmatic inclusions, leucocratic veins and other magmatic structures; Stop 3), the other derived from pre-Variscan leuco-monzogranite, such as the building stone mined at the “Argentera” quarry near Settimo Vittone / Montestrutto (Stop 2; so-called “Verde Argento” contains jadeite, phengite, K-feldspar, quartz). Polycyclic and more rarely monocyclic metasediments contain evidence of a complex Alpine PTDt-evolution, locally including relics of their prograde history from blueschist, one or more stages at eclogite facies. Recent petrochronological studies have dated this HP-evolution of the Sesia Zone in some detail. In the area visited, clear evidence of HP-cycling has been identified in one km-size tectonic slice (Stop 1), but not in adjacent parts of the EMC, indicating “yo-yo tectonics”. Partial retrogression and attendant ductile to brittle deformation of the HP-rocks is evident in one of the outcrops (Stop 4). Apart from the four localities in the Sesia Zone, a final outcrop introduces HP-rocks of the adjacent Piemonte oceanic unit, specifically calc-schists and ophiolite members of the “Zermatt-Saas” zone. The hilltop outcrop (Stop 5) displays foliated antigorite schist with peridotite relics (clinopyroxene, spinel) containing lenses derived from doleritic dykes. These fine-grained metarodingites and the folded veins containing Mg-chlorite and titanoclinohumite within serpentinite once again indicate equilibration under low-temperature eclogite facies conditions. However, these units reached that HP stage more than 20 Ma after the youngest eclogite facies imprint recognized in the Sesia Zone. Despite nearly half a century of intense study in the Sesia Zone, the complex assembly of its HP-terranes and their relation to more external parts of the Western Alps remains incompletely understood. This field guide merely introduces a few of the classic outcrops and discusses some of the critical evidence they contain, but it could not incorporate details on each stage of the evolution recognized so far.
Resumo:
Convergent plate margins typically experience a transition from subduction to collision dynamics as massive continental blocks enter the subduction channel. Studies of high-pressure rocks indicate that tectonic fragments are rapidly exhumed from eclogite facies to midcrustal levels, but the details of such dynamics are controversial.To understand the dynamics of a subduction channel we report the results of a petrochronological study from the central Sesia Zone, a key element of the internalWestern Alps.This comprises two polymetamorphic basement complexes (Eclogitic Micaschist Complex and Gneiss Minuti Complex) and a thin, dismembered cover sequence (Scalaro Unit) associated with pre-Alpine metagabbros and metasediments (Bonze Unit). Structurally controlled samples from three of these units (Eclogitic Micaschist Complex and Scalaro-Bonze Units) yield unequivocal petrological and geochronological evidence of two distinct high-pressure stages. Ages (U-Th-Pb) of growth zones in accessory allanite and zircon, combined with inclusion and textural relationships, can be tied to the multi-stage evolution of single samples.Two independent tectono-metamorphic ‘slices’ showing a coherent metamorphic evolution during a given time interval have been recognized: the Fondo slice (which includes Scalaro and Bonze rocks) and the Druer slice (belonging to the Eclogitic Micaschist Complex).The new data indicate separate stages of deformation at eclogite-facies conditions for each recognized independent kilometer-sized tectono-metamorphic slice, between ~85 and 60 Ma, with evidence of intermittent decompression (∆P~0.5 GPa) within only the Fondo slice. The evolution path of the Druer slice indicates a different P-T-time evolution with prolonged eclogite-facies metamorphism between ~85 and 75Ma. Our approach, combining structural, petrological and geochronological techniques, yields field-based constraints on the duration and rates of dynamics within a subduction channel.
Resumo:
In the Sesia Zone (Italian Western Alps), slivers of continental crust characterised by an Alpine high-pressure imprint are intermingled with abundant mafic rocks and Mesozoic metasediments. An extensive study of the central Sesia Zone was undertaken to identify and reconstruct the lithological setting of the mono-cyclic sediments of the Scalaro Unit. A new geological map (1:5000) and schematic cross sections across the Scalaro Unit and the adjoining Eclogitic Micaschist Complex are presented here. In order to delimit the size and shape of the mono-metamorphic unit and understand its internal geometry with respect to the poly-metamorphic basement, an integrated approach was used. Linking observations and data across a range of scales, from kilometres in the field down to petrological and chronological data obtained at micrometre scale, we define for the first time the real size and internal geometry of the Scalaro Unit, as well as its large-scale structural context.
Resumo:
1. Positive interactions among plants can increase species richness by relaxing environmental filters and providing more heterogeneous environments. However, it is not known if facilitation could affect coexistence through other mechanisms. Most studies on plant coexistence focus on negative frequency-dependent mechanisms (decreasing the abundance of common species); here, we test if facilitation can enhance coexistence by giving species an advantage when rare. 2. To test our hypothesis, we used a global data set from drylands and alpine environments and measured the intensity of facilitation (based on co-occurrences with nurse plants) for 48 species present in at least 4 different sites and with a range of abundances in the field. We compared these results with the degree of facilitation experienced by species which are globally rare or common (according to the IUCN Red List), and with a larger data base including over 1200 co-occurrences of target species with their nurses. 3. Facilitation was stronger for rare species (i.e. those having lower local abundances or considered endangered by the IUCN) than for common species, and strongly decreased with the abundance of the facilitated species. These results hold after accounting for the distance of each species from its ecological optimum (i.e. the degree of functional stress it experiences). 4. Synthesis. Our results highlight that nurse plants not only increase the number of species able to colonize a given site, but may also promote species coexistence by preventing the local extinction of rare species. Our findings illustrate the role that nurse plants play in conserving endangered species and link the relationship between facilitation and diversity with coexistence theory. As such, they provide further mechanistic understanding on how facilitation maintains plant diversity.
Resumo:
The main goals of this study were to identifythe alpine torrent catchments that are sensitive to climatic changes and to assess the robustness of the methods for the elaboration of flood and debris flow hazard zone maps to specific effects of climate changes. In this study, a procedure for the identification and localization of torrent catchments in which the climate scenarios will modify the hazard situation was developed. In two case studies, the impacts of a potential increase of precipitation intensities to the delimited hazard zones were studied. The identification and localization of the torrent and river catchments, where unfavourable changes in the hazard situation occur, could eliminate speculative and unnecessary measures against the impacts of climate changes like a general enlargement of hazard zones or a general over dimensioning of protection structures for the whole territory. The results showed a high spatial variability of the sensitivity of catchments to climate changes. In sensitive catchments, the sediment management in alpine torrents will meet future challenges due to a higher rate for sediment removal from retention basins. The case studies showed a remarkable increase of the areas affected by floods and debris flow when considering possible future precipitation intensities in hazard mapping. But, the calculated increase in extent of future hazard zones lay within the uncertainty of the methods used today for the delimitation of the hazard zones. Thus, the consideration of the uncertainties laying in the methods for the elaboration of hazard zone maps in the torrent and river catchments sensitive to climate changes would provide a useful instrument for the consideration of potential future climate conditions. The study demonstrated that weak points in protection structures in future will become more important in risk management activities.