420 resultados para Kellerman, Fritz


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluvial cut-and-fill sequences have frequently been reported from various sites on Earth. Nevertheless, the information about the past erosional regime and hydrological conditions have not yet been adequately deciphered from these archives. The Quaternary terrace sequences in the Pisco valley, located at ca. 13°S, offer a manifestation of an orbitally-driven cyclicity in terrace construction where phases of sediment accumulation have been related to the Minchin (48–36 ka) and Tauca (26–15 ka) lake level highstands on the Altiplano. Here, we present a 10Be-based sediment budget for the cut-and-fill terrace sequences in this valley to quantify the orbitally forced changes in precipitation and erosion. We find that the Minchin period was characterized by an erosional pulse along the Pacific coast where denudation rates reached values as high as 600±80 mm/ka600±80 mm/ka for a relatively short time span lasting a few thousands of years. This contrasts to the younger pluvial periods and the modern situation when 10Be-based sediment budgets register nearly zero erosion at the Pacific coast. We relate these contrasts to different erosional conditions between the modern and the Minchin time. First, the sediment budget infers a precipitation pattern that matches with the modern climate ca. 1000 km farther north, where highly erratic and extreme El Niño-related precipitation results in fast erosion and flooding along the coast. Second, the formation of a thick terrace sequence requires sufficient material on catchment hillslopes to be stripped off by erosion. This was most likely the case immediately before the start of the Minchin period, because this erosional epoch was preceded by a >50 ka-long time span with poorly erosive climate conditions, allowing for sufficient regolith to build up on the hillslopes. Finally, this study suggests a strong control of orbitally and ice sheet forced latitudinal shifts of the ITCZ on the erosional gradients and sediment production on the western escarpment of the Peruvian Andes at 13° during the Minchin period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared stimulated luminescence (IRSL) and post-IR IRSL are applied to small aliquots and single grains to determine the equivalent dose (De) of eleven alluvial and fluvial sediment samples collected in the Pativilca valley, Central Peru at ca. 10°S latitude. Small aliquot De distributions are rather symmetric and display over-dispersion values between 15 and 46%. Small aliquot g-values range between 4 and 8% per decade for the IRSL and 1 and 2% per decade for the post-IR IRSL signal. The single grain De distributions are highly over-dispersed with some of them skewed to higher doses, implying partial bleaching; this is especially true for the post-IR IRSL. Measurements of a modern analog reveal that residuals due to partial bleaching are present in both the IRSL as well as the post-IR IRSL signal. The g-values of individual grains exhibit a wide range with high individual uncertainties and might contribute significantly to the spread of the single grain De values, at least for the IRSL data. Electron Microprobe Analysis performed on single grains reveal that a varying K-content can be excluded as the origin of over-dispersion. Final ages for the different approaches are calculated using the Central Age Model and the Minimum Age Model (MAM). The samples are grouped into well-beached, potentially well-bleached and partially bleached according to the evaluation of the single grain distributions and the agreement of age estimates between methods. The application of the MAM to the single grain data resulted in consistent age estimates for both the fading corrected IRSL and the post-IR IRSL ages, and suggests that both approaches are suitable for dating these samples. Keywords

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Depressive disorders are among the leading causes of worldwide disability with mild to moderate forms of depression being particularly common. Low-intensity treatments such as online psychological treatments may be an effective way to treat mild to moderate depressive symptoms and prevent the emergence or relapse of major depression. METHODS/DESIGN: This study is a currently recruiting multicentre parallel-groups pragmatic randomized-controlled single-blind trial. A total of 1000 participants with mild to moderate symptoms of depression from various settings including in- and outpatient services will be randomized to an online psychological treatment or care as usual (CAU). We hypothesize that the intervention will be superior to CAU in reducing depressive symptoms assessed with the Personal Health Questionnaire (PHQ-9, primary outcome measure) following the intervention (12 wks) and at follow-up (24 and 48 wks). Further outcome parameters include quality of life, use of health care resources and attitude towards online psychological treatments. DISCUSSION: The study will yield meaningful answers to the question of whether online psychological treatment can contribute to the effective and efficient prevention and treatment of mild to moderate depression on a population level with a low barrier to entry. TRIAL REGISTRATION: Trial Registration Number: NCT01636752.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Landscape evolution and surface morphology in mountainous settings are a function of the relative importance between sediment transport processes acting on hillslopes and in channels, modulated by climate variables. The Niesen nappe in the Swiss Penninic Prealps presents a unique setting in which opposite facing flanks host basins underlain by identical lithologies, but contrasting litho-tectonic architectures where lithologies either dip parallel to the topographic slope or in the opposite direction (i.e. dip slope and non-dip slope). The north-western facing Diemtigen flank represents such a dip slope situation and is characterized by a gentle topography, low hillslope gradients, poorly dissected channels, and it hosts large landslides. In contrast, the south-eastern facing Frutigen side can be described as non-dip slope flank with deeply incised bedrock channels, high mean hillslope gradients and high relief topography. Results from morphometric analysis reveal that noticeable differences in morphometric parameters can be related to the contrasts in the relative importance of the internal hillslope-channel system between both valley flanks. While the contrasting dip-orientations of the underlying flysch bedrock has promoted hillslope and channelized processes to contrasting extents and particularly the occurrence of large landslides on the dip slope flank, the flank averaged beryllium-10 (10Be)-derived denudation rates are very similar and range between 0.20 and 0.26 mm yr−1. In addition, our denudation rates offer no direct relationship to basin's slope, area, steepness or concavity index, but reveal a positive correlation to mean basin elevation that we interpret as having been controlled by climatically driven factors such as frost-induced processes and orographic precipitation. Our findings illustrate that while the landscape properties in this part of the northern Alpine border can mainly be related to the tectonic architecture of the underlying bedrock, the denudation rates have a strong orographic control through elevation dependent mean annual temperature and precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study uses the widths, the spacing and the grain-size pattern of Oligo/Miocene alluvial fan conglomerates in the central segment of the Swiss Alpine foreland to reconstruct the topographic development of the Alps. These data are analysed with models of longitudinal stream profile development, to propose that the Alpine topography evolved from an early transient state where streams adjusted to rock uplift by headward retreat, to a mature phase where any changes in rock uplift were accommodated by vertical incision. The first stage comprises the time interval between ca 31 Ma and 22 Ma, when the Alpine streams deposited many small fans with a lateral spacing of <30 km in the north Alpine foreland. As the range evolved, the streams joined and the fans coalesced into a few large depositional systems with a lateral spacing of ca 80 to 100 km at 22 Ma. The models used here suggest that the overall elevation of the Alps increased rapidly within <5 Myr. The variability in pebble size increased either due to variations in sediment supply, enhanced orographic effects, or preferentially due to a change towards a stormier palaeoclimate. By 22 Ma, only two large rivers carried material into the foreland fans, suggesting that the major Alpine streams had established themselves. This second phase of stable drainage network was maintained until ca 5 Ma, when the uplift and erosion of the Molasse started and streams were redirected both in the Alps and in the foreland. This study illustrates that sedimentological archives of foreland basins can be used to reconstruct the chronology of the topographic development of mountain belts. It is suggested that the finite elevation of mountainous landscapes is reached early during orogeny and can be maintained for millions of years, provided that erosion is efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter, we discuss the factors controlling the mechanisms and rates of hillslope failure in temperate environments with a major focus on the Swiss Alps. We frame this presentation by defining Alpine hillslopes as either strength- or transport-limited hillslopes. We organize this discussion into individual sections that outline how hillslope processes are related to (1) the mechanical strength and bedding orientation of bedrock, (2) the competition between channelized and hillslope processes, (3) hillslope–channel coupling relationships, and (4) fluvial erosion rates. We find that hillslope angles depend on bedrock strength along nonincised channels, but are not related to this parameter in inner gorges. We also find that valley flanks host deep-seated landslides where the bedrock dips parallel to the topographic slope. In the opposite case, the valley sides are dissected by a network of bedrock channels bordered by strength-limited hillslopes. In this chapter, we illustrate that a high ratio between sediment discharge on hillslopes and in channels explains the formation of smooth landscapes with low channel densities and long response times. This chapter considers the formation of strength-limited hillslopes as a consequence of an upslope-directed coupling between channels and hillslopes. The chapter also discusses that soil-mantled hillslopes occur where fluvial incision rates are less than weathering rates of bedrock, which are limited to 0.1–0.3 mm yr−1. We finally present evidence for a decreasing trend of hillslope-derived sediment discharge during the Holocene, but predict an opposite trend in the nearest future as winters are warmer and wetter.