303 resultados para Pulmonary surfactant
Resumo:
AIMS Pulmonary vein isolation (PVI) is an effective treatment option for paroxysmal atrial fibrillation (PAF). Reconnection of pulmonary veins (PVs) is the predominant cause for recurrence of PAF. However, treatment of patients with recurrence of PAF despite isolated PV in the absence of extra-PV foci remains challenging. METHODS AND RESULTS Of 265 patients undergoing repeat catheter ablation (CA) for recurrence of PAF 21 (8%) patients (14 men, age 58 ± 14 years) showed no reconnection of PV. Therefore, inducibility of sustained atrial arrhythmias was tested. If sustained atrial fibrillation (AF) or sustained atrial tachycardia (AT) was induced, patients underwent CA. During follow-up (FU), Holter- and Tele-electrocardiogram were performed. In 19 (91%) of 21 patients, sustained atrial arrhythmias [16 (84%) AF; 3 (15%) patients AT] were induced. One patient showed PAF. Eighteen patients underwent CA aiming for termination of induced arrhythmia. In 14 (77%) patients, termination into sinus rhythm was achieved. Despite extensive CA, three (16%) patients were externally cardioverted. No periprocedural complications occurred. During 21.2 ± 6.8-month FU, 10 (53%) patients were free of any arrhythmia. Paroxysmal atrial fibrillation recurred in 4 (21%) and AT in 5 (26%) patients. One patient showed persistent AF. Repeat CA was scheduled and successfully performed for these patients. CONCLUSION In patients with recurrence of PAF despite isolated PV, termination of induced atrial arrhythmias can be achieved in most patients by defragmentation and AT ablation. Moreover, this ablation strategy results in favourable mid-term outcome results.
Resumo:
Atrial septal defects (ASDs) are one of the most frequent congenital cardiac malformations, accounting for about 8-10% of all congenital heart defects. The prevalence of pulmonary arterial hypertension (PAH) in adults with an ASD is 8-10%. Different clinical PAH scenarios can be encountered. At one end of the spectrum are adults with no or only mild pulmonary vascular disease and a large shunt. These are patients who can safely undergo shunt closure. In the elderly, mild residual pulmonary hypertension after shunt closure is the rule. At the other end of the spectrum are adults with severe, irreversible pulmonary vascular disease, shunt reversal and chronic cyanosis, that is, Eisenmenger syndrome. These are patients who need to be managed medically. The challenge is to properly classify ASD patients with PAH falling in between the two ends of the spectrum as the ones with advanced, but reversible pulmonary vascular disease amenable to repair, versus the ones with progressive pulmonary vascular disease not responding to shunt closure. There are concerns that adults with progressive pulmonary vascular disease have worse outcomes after shunt closure than patients not undergoing shunt closure. Due to the correlation of pulmonary vascular changes and pulmonary hemodynamics, cardiac catheterization is used in the decision-making process. It is important to consider the hemodynamic data in the context of the clinical picture, the defect anatomy and further noninvasive tests when evaluating the option of shunt closure in these patients.
Resumo:
BACKGROUND There is considerable interindividual variability in pulmonary artery pressure among high-altitude (HA) dwellers, but the underlying mechanism is not known. At low altitude, a patent foramen ovale (PFO) is present in about 25% of the general population. Its prevalence is increased in clinical conditions associated with pulmonary hypertension and arterial hypoxemia, and it is thought to aggravate these problems. METHODS We searched for a PFO (transesophageal echocardiography) in healthy HA dwellers (n = 22) and patients with chronic mountain sickness (n = 35) at 3,600 m above sea level and studied its effects (transthoracic echocardiography) on right ventricular (RV) function, pulmonary artery pressure, and vascular resistance at rest and during mild exercise (50 W), an intervention designed to further increase pulmonary artery pressure. RESULTS The prevalence of PFO (32%) was similar to that reported in low-altitude populations and was not different in participants with and without chronic mountain sickness. Its presence was associated with RV enlargement at rest and an exaggerated increase in right-ventricular-to-right-atrial pressure gradient (25 ± 7 mm Hg vs 15 ± 9 mm Hg, P < .001) and a blunted increase in fractional area change of the right ventricle (3% [-1%, 5%] vs 7% [3%, 16%], P = .008) during mild exercise. CONCLUSIONS These findings show, we believe for the first time, that although the prevalence of PFO is not increased in HA dwellers, its presence appears to facilitate pulmonary vasoconstriction and RV dysfunction during a mild physical effort frequently associated with daily activity. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov.
Resumo:
OBJECTIVE To evaluate whether magnetic resonance imaging (MRI) is effective as computed tomography (CT) in determining morphologic and functional pulmonary changes in patients with cystic fibrosis (CF) in association with multiple clinical parameters. MATERIALS AND METHODS Institutional review board approval and patient written informed consent were obtained. In this prospective study, 30 patients with CF (17 men and 13 women; mean (SD) age, 30.2 (9.2) years; range, 19-52 years) were included. Chest CT was acquired by unenhanced low-dose technique for clinical purposes. Lung MRI (1.5 T) comprised T2- and T1-weighted sequences before and after the application of 0.1-mmol·kg gadobutrol, also considering lung perfusion imaging. All CT and MR images were visually evaluated by using 2 different scoring systems: the modified Helbich and the Eichinger scores. Signal intensity of the peribronchial walls and detected mucus on T2-weighted images as well as signal enhancement of the peribronchial walls on contrast-enhanced T1-weighted sequences were additionally assessed on MRI. For the clinical evaluation, the pulmonary exacerbation rate, laboratory, and pulmonary functional parameters were determined. RESULTS The overall modified Helbich CT score had a mean (SD) of 15.3 (4.8) (range, 3-21) and median of 16.0 (interquartile range [IQR], 6.3). The overall modified Helbich MR score showed slightly, not significantly, lower values (Wilcoxon rank sum test and Student t test; P > 0.05): mean (SD) of 14.3 (4.7) (range, 3-20) and median of 15.0 (IQR, 7.3). Without assessment of perfusion, the overall Eichinger score resulted in the following values for CT vs MR examinations: mean (SD), 20.3 (7.2) (range, 4-31); and median, 21.0 (IQR, 9.5) vs mean (SD), 19.5 (7.1) (range, 4-33); and median, 20.0 (IQR, 9.0). All differences between CT and MR examinations were not significant (Wilcoxon rank sum tests and Student t tests; P > 0.05). In general, the correlations of the CT scores (overall and different imaging parameters) to the clinical parameters were slightly higher compared to the MRI scores. However, if all additional MRI parameters were integrated into the scoring systems, the correlations reached the values of the CT scores. The overall image quality was significantly higher for the CT examinations compared to the MRI sequences. CONCLUSIONS One major diagnostic benefit of lung MRI in CF is the possible acquisition of several different morphologic and functional imaging features without the use of any radiation exposure. Lung MRI shows reliable associations with CT and clinical parameters, which suggests its implementation in CF for routine diagnosis, which would be particularly important in follow-up imaging over the long term.
Resumo:
Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of "collateral ventilation" has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results. KEY POINTS Today, surgical and various minimal invasive methods of lung volume reduction are in use. Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area. Imaging can detect periinterventional complications. Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientific evidence.
Resumo:
UNLABELLED The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. PATIENTS, MATERIAL AND METHODS 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. RESULTS Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. CONCLUSIONS SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.
Resumo:
PURPOSE Lymphangioleiomyomatosis (LAM) is characterized by proliferation of smooth muscle tissue that causes bronchial obstruction and secondary cystic destruction of lung parenchyma. The aim of this study was to evaluate the typical distribution of cystic defects in LAM with quantitative volumetric chest computed tomography (CT). MATERIALS AND METHODS CT examinations of 20 patients with confirmed LAM were evaluated with region-based quantification of lung parenchyma. Additionally, 10 consecutive patients were identified who had recently undergone CT imaging of the lung at our institution, in which no pathologies of the lung were found, to serve as a control group. Each lung was divided into three regions (upper, middle and lower thirds) with identical number of slices. In addition, we defined a "peel" and "core" of the lung comprising the 2 cm subpleural space and the remaining inner lung area. Computerized detection of lung volume and relative emphysema was performed with the PULMO 3D software (v3.42, Fraunhofer MEVIS, Bremen, Germany). This software package enables the quantification of emphysematous lung parenchyma by calculating the pixel index, which is defined as the ratio of lung voxels with a density <-950HU to the total number of voxels in the lung. RESULTS Cystic changes accounted for 0.1-39.1% of the total lung volume in patients with LAM. Disease manifestation in the central lung was significantly higher than in peripheral areas (peel median: 15.1%, core median: 20.5%; p=0.001). Lower thirds of lung parenchyma showed significantly less cystic changes than upper and middle lung areas combined (lower third: median 13.4, upper and middle thirds: median 19.0, p=0.001). CONCLUSION The distribution of cystic lesions in LAM is significantly more pronounced in the central lung compared to peripheral areas. There is a significant predominance of cystic changes in apical and intermediate lung zones compared to the lung bases.
Resumo:
PURPOSE To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. MATERIALS AND METHODS Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. RESULTS Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. CONCLUSION AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.
Resumo:
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with poor survival. Recent studies have improved understanding of IPF and new discoveries have led to novel treatment options, which now have become available for patients. In face of the newly available therapies we present an update on the pathophysiology and epidemiology of IPF. We discuss the typical clinical findings and elaborate diagnostic procedures according to current guidelines and our daily practice approach. The role of biomarkers will briefly be outlined. Finally, we discuss novel antifibrotic treatment options for IPF (pirfenidone, nintedanib) and the management of patients regarding to comorbidities and complications. Both pirfenidone and nintedanib were shown to reduce the progression of IPF and therefore represent novel therapeutic strategies in this so far untreatable chronic lung disease.
Resumo:
BACKGROUND Registries are important for real-life epidemiology on different pulmonary hypertension (PH) groups. OBJECTIVE To provide long-term data of the Swiss PH registry of 1998-2012. METHODS PH patients have been classified into 5 groups and registered upon written informed consent at 5 university and 8 associated hospitals since 1998. New York Heart Association (NYHA) class, 6-min walk distance, hemodynamics and therapy were registered at baseline. Patients were regularly followed, and therapy and events (death, transplantation, endarterectomy or loss to follow-up) registered. The data were stratified according to the time of diagnosis into prevalent before 2000 and incident during 2000-2004, 2005-2008 and 2009-2012. RESULTS From 996 (53% female) PH patients, 549 had pulmonary arterial hypertension (PAH), 36 PH due to left heart disease, 127 due to lung disease, 249 to chronic thromboembolic PH (CTEPH) and 35 to miscellaneous PH. Age and BMI significantly increased over time, whereas hemodynamic severity decreased. Overall, event-free survival was 84, 72, 64 and 58% for the years 1-4 and similar for time periods since 2000, but better during the more recent periods for PAH and CTEPH. Of all PAH cases, 89% had target medical therapy and 43% combination therapy. Of CTEPH patients, 14 and 2% underwent pulmonary endarterectomy or transplantation, respectively; 87% were treated with PAH target therapy. CONCLUSION Since 2000, the incident Swiss PH patients registered were older, hemodynamically better and mostly treated with PAH target therapies. Survival has been better for PAH and CTEPH diagnosed since 2008 compared with earlier diagnosis or other classifications.
Resumo:
RATIONALE Changes in the pulmonary microbiota are associated with progressive respiratory diseases including chronic obstructive pulmonary disease. Whether there is a causal relationship between these changes and disease progression remains unknown. OBJECTIVE To investigate the link between an altered microbiota and disease, we utilized a model of chronic lung inflammation in specific pathogen free (SPF) mice and mice depleted of microbiota by antibiotic treatment or devoid of a microbiota (axenic). METHODS Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage and decline in lung function were quantified. MEASUREMENTS AND MAIN RESULTS Similar to human disease, the composition of the pulmonary microbiota was altered in disease animals. We found that the microbiota richness and diversity were decreased in LPS/Elastase-treated mice, with an increased representation of the genera Pseudomonas, Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was implicated in disease development as mice depleted of microbiota exhibited an improvement in lung function, reduction in airway inflammation, decrease in lymphoid neogenesis and auto-reactive antibody responses. The absence of microbial cues also markedly decreased the production of IL-17A, whilst intranasal transfer of fluid enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A production in the lungs of antibiotic treated or axenic recipients. Finally, in mice harboring a microbiota, neutralizing IL-17A dampened inflammation and restored lung function. CONCLUSIONS Collectively, our data indicate that host-microbial cross-talk promotes inflammation and could underlie the chronicity of inflammatory lung diseases.