39 resultados para x radiation
Resumo:
Microbeam radiation therapy (MRT), a form of experimental radiosurgery of tumours using multiple parallel, planar, micrometres-wide, synchrotron-generated X-ray beams ('microbeams'), can safely deliver radiation doses to contiguous normal animal tissues that are much higher than the maximum doses tolerated by the same normal tissues of animals or patients from any standard millimetres-wide radiosurgical beam. An array of parallel microbeams, even in doses that cause little damage to radiosensitive developing tissues, for example, the chick chorioallantoic membrane, can inhibit growth or ablate some transplanted malignant tumours in rodents. The cerebella of 100 normal 20 to 38g suckling Sprague-Dawley rat pups and of 13 normal 5 to 12kg weanling Yorkshire piglets were irradiated with an array of parallel, synchrotron-wiggler-generated X-ray microbeams in doses overlapping the MRT-relevant range (about 50-600Gy) using the ID17 wiggler beamline tangential to the 6GeV electron synchrotron ring at the European Synchrotron Radiation Facility in Grenoble, France. Subsequent favourable development of most animals over at least 1 year suggests that MRT might be used to treat children's brain tumours with less risk to the development of the central nervous system than is presently the case when using wider beams.
Resumo:
PURPOSE: To determine the radiation dose delivered to organs during standard computed tomographic (CT) examination of the trunk. MATERIALS AND METHODS: In vivo locations and sizes of specific body organs were determined from CT images of patients who underwent examinations. The corresponding CT investigations were then simulated on an anthropomorphic phantom. The resulting doses were measured at 70 different sites inside the phantom by using thermoluminescent dosimeters. On the basis of measurements of free-in-air air kerma at the rotation axis of the CT gantry, conversion factors were calculated so that measurements could be used with different models of CT equipment. RESULTS: Starting from the dose values recorded, the mean organ doses were determined for 21 organs. The skin received 22-36 mGy; the lungs, less than 1-18 mGy; the kidneys, 7-24 mGy; and the ovaries, less than 1-19 mGy, depending on the type of CT examination performed. CONCLUSION: These values are high compared with other x-ray examinations and should be minimized as much as possible. The number of tomographic sections obtained should be kept as low as possible according to diagnostic need.
Resumo:
For every diagnostical X-ray radiation exposure the applied dose has to be limited to the smallest possible value. Within the scope of a general Swiss survey it has been found that in the various medical practices and hospitals the applied doses varied quite strongly. The main reasons leading to an overdose were the operating conditions of the X-ray and film processing equipment, the film and foil materials and improper filming techniques. The applied single dose served as a measure for the radiation protection assessment of diagnostical X-ray exposures. To prevent this in the future, individual patients who are exposed to unnecessary radiation loads should be regularly checked in quality-ensuring tests.
Resumo:
Various conventional and modern fluoroscope units had been examined with an anthropomorphic phantom to determine the applied average organ doses. The aim of our investigation was to compare these doses with those normally delivered to the patients during a conventional X-ray examination of the thorax. As was to be expected, the doses resulting from conventional fluoroscopic units are much higher than the doses from modern units. As shown by means of our measurements, the efforts of advanced technology permit to reduce the dose rate up to a factor of 30. I.e., the doses resulting from modern fluoroscopic units are even smaller than the doses received during a conventional thoracic X-ray examination, what means a great improvement for this examination technic.
Resumo:
RATIONALE AND OBJECTIVES: To evaluate the effect of a modified abdominal multislice computed tomography (CT) protocol for obese patients on image quality and radiation dose. MATERIALS AND METHODS: An adult female anthropomorphic phantom was used to simulate obese patients by adding one or two 4-cm circumferential layers of fat-equivalent material to the abdominal portion. The phantom was scanned with a subcutaneous fat thickness of 0, 4, and 8 cm using the following parameters (detector configuration/beam pitch/table feed per rotation/gantry rotation time/kV/mA): standard protocol A: 16 x 0.625 mm/1.75/17.5 mm/0.5 seconds/140/380, and modified protocol B: 16 x 1.25 mm/1.375/27.5 mm/1.0 seconds/140/380. Radiation doses to six abdominal organs and the skin, image noise values, and contrast-to-noise ratios (CNRs) were analyzed. Statistical analysis included analysis of variance, Wilcoxon rank sum, and Student's t-test (P < .05). RESULTS: Applying the modified protocol B with one or two fat rings, the image noise decreased significantly (P < .05), and simultaneously, the CNR increased significantly compared with protocol A (P < .05). Organ doses significantly increased, up to 54.7%, comparing modified protocol B with one fat ring to the routine protocol A with no fat rings (P < .05). However, no significant change in organ dose was seen for protocol B with two fat rings compared with protocol A without fat rings (range -2.1% to 8.1%) (P > .05). CONCLUSIONS: Using a modified abdominal multislice CT protocol for obese patients with 8 cm or more of subcutaneous fat, image quality can be substantially improved without a significant increase in radiation dose to the abdominal organs.
Resumo:
The purpose of this work was the understanding of microbeam radiation therapy at the ESRF in order to find the best compromise between curing of tumors and sparing of normal tissues, to obtain a better understanding of survival curves and to report its efficiency. This method uses synchrotron-generated x-ray microbeams. Rats were implanted with 9L gliosarcomas and the tumors were diagnosed by MRI. They were irradiated 14 days after implantation by arrays of 25 microm wide microbeams in unidirectional mode, with a skin entrance dose of 625 Gy. The effect of using 200 or 100 microm center-to-center spacing between the microbeams was compared. The median survival time (post-implantation) was 40 and 67 days at 200 and 100 microm spacing, respectively. However, 72% of rats irradiated at 100 microm spacing showed abnormal clinical signs and weight patterns, whereas only 12% of rats were affected at 200 microm spacing. In parallel, histological lesions of the normal brain were found in the 100 microm series only. Although the increase in lifespan was equal to 273% and 102% for the 100 and 200 microm series, respectively, the 200 microm spacing protocol provides a better sparing of healthy tissue and may prove useful in combination with other radiation modalities or additional drugs.
Resumo:
The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.
Resumo:
During the past decade microbeam radiation therapy has evolved from preclinical studies to a stage in which clinical trials can be planned, using spatially fractionated, highly collimated and high intensity beams like those generated at the x-ray ID17 beamline of the European Synchrotron Radiation Facility. The production of such microbeams typically between 25 and 100 microm full width at half maximum (FWHM) values and 100-400 microm center-to-center (c-t-c) spacings requires a multislit collimator either with fixed or adjustable microbeam width. The mechanical regularity of such devices is the most important property required to produce an array of identical microbeams. That ensures treatment reproducibility and reliable use of Monte Carlo-based treatment planning systems. New high precision wire cutting techniques allow the fabrication of these collimators made of tungsten carbide. We present a variable slit width collimator as well as a single slit device with a fixed setting of 50 microm FWHM and 400 microm c-t-c, both able to cover irradiation fields of 50 mm width, deemed to meet clinical requirements. Important improvements have reduced the standard deviation of 5.5 microm to less than 1 microm for a nominal FWHM value of 25 microm. The specifications of both devices, the methods used to measure these characteristics, and the results are presented.
Resumo:
ATLS Guidelines recommend single plain radiography of the chest and pelvis as part of the primary survey. Such isolated radiographs, usually obtained by bedside machines, can result in limited, low-quality studies that can adversely affect management. A new digital, low-radiation imaging device, the "Lodox Statscan" (LS), provides full-body anterior and lateral views based on enhanced linear slot-scanning technology in just over 5 minutes. We have the first LS in Europe at our facility. The aim of this study was to compare LS with computed tomographic (CT) scanning, as the gold standard, to determine the sensitivity of LS investigation in detecting injuries to the chest, thoracolumbar spine, and pelvis from our own experience, and to compare our findings with those of conventional radiography in the literature.
Resumo:
BACKGROUND: Lodox-Statscan is a whole-body, skeletal and soft-tissue, low-dose X-ray scanner Anterior-posterior and lateral thoraco-abdominal studies are obtained in 3-5 minutes with only about one-third of the radiation required for conventional radiography. Since its approval by the Food and Drug Administration (FDA) in the USA, several trauma centers have incorporated this technology into their Advanced Trauma Life Support protocols. This review provides a brief overview of the system, and describes the authors' own experience with the system. METHODS: We performed a PubMed search to retrieve all references with 'Lodox' and 'Stat-scan' used as search terms. We furthermore used the google search engine to identify existing alternatives. To the best of our knowledge, this is the only FDA-approved device of its kind currently used in trauma. RESULTS AND CONCLUSION: The intention of our review has been to sensitize the readership that such alternative devices exist. The key message is that low dosage full body radiography may be an alternative to conventional resuscitation room radiography which is usually a prelude to CT scanning (ATLS algorithm). The combination of both is radiation intensive and therefore we consider any reduction of radiation a success. But only the future will show whether LS will survive in the face of low-dose radiation CT scanners and magnetic resonance imaging devices that may eventually completely replace conventional radiography.
Resumo:
The hypothesis of ecological divergence giving rise to premating isolation in the face of gene flow is controversial. However, this may be an important mechanism to explain the rapid multiplication of species during adaptive radiation following the colonization of a new environment when geographical barriers to gene flow are largely absent but underutilized niche space is abundant. Using cichlid fish, we tested the prediction of ecological speciation that the strength of premating isolation among species is predicted by phenotypic rather than genetic distance. We conducted mate choice experiments between three closely related, sympatric species of a recent radiation in Lake Mweru (Zambia/DRC) that differ in habitat use and phenotype, and a distantly related population from Lake Bangweulu that resembles one of the species in Lake Mweru. We found significant assortative mating among all closely related, sympatric species that differed phenotypically, but none between the distantly related allopatric populations of more similar phenotype. Phenotypic distance between species was a good predictor of the strength of premating isolation, suggesting that assortative mating can evolve rapidly in association with ecological divergence during adaptive radiation. Our data also reveals that distantly related allopatric populations that have not diverged phenotypically, may hybridize when coming into secondary contact, e.g. upon river capture because of diversion of drainage systems.
Resumo:
A basic prerequisite for in vivo X-ray imaging of the lung is the exact determination of radiation dose. Achieving resolutions of the order of micrometres may become particularly challenging owing to increased dose, which in the worst case can be lethal for the imaged animal model. A framework for linking image quality to radiation dose in order to optimize experimental parameters with respect to dose reduction is presented. The approach may find application for current and future in vivo studies to facilitate proper experiment planning and radiation risk assessment on the one hand and exploit imaging capabilities on the other.
Resumo:
The small trees of gas-exchanging pulmonary airways which are fed by the most distal purely conducting airways are called acini and represent the functional gas-exchanging units. The three-dimensional architecture of the acini has a strong influence on ventilation and particle deposition. Due to the difficulty to identify individual acini on microscopic lung sections the knowledge about the number of acini and their biological parameters like volume, surface area, and number of alveoli per acinus are limited. We developed a method to extract individual acini from lungs imaged by high-resolution synchrotron radiation based X-ray tomographic microscopy and estimated their volume, surface area and number of alveoli. Rat acini were isolated by semiautomatically closing the airways at the transition from conducting to gas-exchanging airways. We estimated a mean internal acinar volume of 1.148mm(3), a mean acinar surface area of 73.9mm(2), and a mean of 8470 alveoli per acinus. Assuming that the acini are similarly sized throughout different regions of the lung, we calculated that a rat lung contains 5470±833 acini. We conclude that our novel approach is well suited for the fast and reliable characterization of a large number of individual acini in healthy, diseased, or transgenic lungs of different species including humans.