126 resultados para working memory, motor short-term memory, motor control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor retardation is a common symptom of major depressive disorder (MDD). Despite the existence of various assessment methods, little is known on the pathobiology of motor retardation. We aimed to elucidate aspects of motor control investigating the association of objective motor activity and resting state cerebral blood flow (CBF).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Recent anatomical-functional studies have transformed our understanding of cerebral motor control away from a hierarchical structure and toward parallel and interconnected specialized circuits. Subcortical electrical stimulation during awake surgery provides a unique opportunity to identify white matter tracts involved in motor control. For the first time, this study reports the findings on motor modulatory responses evoked by subcortical stimulation and investigates the cortico-subcortical connectivity of cerebral motor control. Experimental design: Twenty-one selected patients were operated while awake for frontal, insular, and parietal diffuse low-grade gliomas. Subcortical electrostimulation mapping was used to search for interference with voluntary movements. The corresponding stimulation sites were localized on brain schemas using the anterior and posterior commissures method. Principal observations: Subcortical negative motor responses were evoked in 20/21 patients, whereas acceleration of voluntary movements and positive motor responses were observed in three and five patients, respectively. The majority of the stimulation sites were detected rostral of the corticospinal tract near the vertical anterior-commissural line, and additional sites were seen in the frontal and parietal white matter. Conclusions: The diverse interferences with motor function resulting in inhibition and acceleration imply a modulatory influence of the detected fiber network. The subcortical stimulation sites were distributed veil-like, anterior to the primary motor fibers, suggesting descending pathways originating from premotor areas known for negative motor response characteristics. Further stimulation sites in the parietal white matter as well as in the anterior arm of the internal capsule indicate a large-scale fronto-parietal motor control network. Hum Brain Mapp, 2012. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the influence of age, sex, and working memory (WM) performance on the visuospatial WM network. Thirty-nine healthy children (7-12 years) completed a dot location functional magnetic resonance imaging (fMRI) task. Percent signal change measured the intensity and laterality indices measured the asymmetry of activation in frontal and parietal brain regions. Old children showed greater intensity of activation in parietal regions than young children but no differences in lateralization were observed. Intensity of activation was similar across sex and WM performance groups. Girls and high WM performers showed more right-sided lateralization of parietal regions than boys and low WM performers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than a century ago, Galton and Spearman suggested that there was a functional relationship between sensory discrimination ability and intelligence. Studies have since been able to confirm a close relationship between general discrimination ability (GDA) and IQ. The aim of the present study was to assess whether this strong relationship between GDA and IQ could be due to working memory (WM) demands of GDA tasks. A sample of 140 children (seventy 9-year-olds and seventy 11-year-olds) was studied. Results showed that there was a significant overlap between WM, GDA and fluid intelligence. Furthermore, results also revealed that WM could not explain the relationship between GDA and fluid intelligence as such, but that it acted as a bottleneck of information processing, limiting the influence of GDA on the prediction of fluid intelligence. Specifically, GDA's influence on the prediction of intelligence was only visible when WM capacity was above a certain level.