43 resultados para verbal fluency
Resumo:
Auditory hallucinations comprise a critical domain of psychopathology in schizophrenia. Repetitive transcranial magnetic stimulation (TMS) has shown promise as an intervention with both positive and negative reports. The aim of this study was to test resting-brain perfusion before treatment as a possible biological marker of response to repetitive TMS. Twenty-four medicated patients underwent resting-brain perfusion magnetic resonance imaging with arterial spin labeling (ASL) before 10 days of repetitive TMS treatment. Response was defined as a reduction in the hallucination change scale of at least 50%. Responders (n=9) were robustly differentiated from nonresponders (n=15) to repetitive TMS by the higher regional cerebral blood flow (CBF) in the left superior temporal gyrus (STG) (P<0.05, corrected) before treatment. Resting-brain perfusion in the left STG predicted the response to repetitive TMS in this study sample, suggesting this parameter as a possible bio-marker of response in patients with schizophrenia and auditory hallucinations. Being noninvasive and relatively easy to use, resting perfusion measurement before treatment might be a clinically relevant way to identify possible responders and nonresponders to repetitive TMS.
Resumo:
Transcranial magnetic stimulation (TMS) is a novel therapeutic approach, used in patients with pharmacoresistant auditory verbal hallucinations (AVH). To investigate the neurobiological effects of TMS on AVH, we measured cerebral blood flow with pseudo-continuous magnetic resonance-arterial spin labeling 20 ± 6 hours before and after TMS treatment.
Resumo:
In this article, we will link neuroimaging, data analysis, and intervention methods in an important psychiatric condition: auditory verbal hallucinations (AVH). The clinical and phenomenological background as well as neurophysiological findings will be covered and discussed with respect to noninvasive brain stimulation. Additionally, methods of noninvasive brain stimulation will be presented as ways to intervene with AVH. Finally, preliminary conclusions and possible future perspectives will be proposed.
Resumo:
Auditory verbal hallucinations (AVH) in schizophrenia patients assumingly result from a state inadequate activation of the primary auditory system. We tested brain responsiveness to auditory stimulation in healthy controls (n=26), and in schizophrenia patients that frequently (n=18) or never (n=11) experienced AVH. Responsiveness was assessed by driving the EEG with click-tones at 20, 30 and 40Hz. We compared stimulus induced EEG changes between groups using spectral amplitude maps and a global measure of phase-locking (GFS). As expected, the 40Hz stimulation elicited the strongest changes. However, while controls and non-hallucinators increased 40Hz EEG activity during stimulation, a left-lateralized decrease was observed in the hallucinators. These differences were significant (p=.02). As expected, GFS increased during stimulation in controls (p=.08) and non-hallucinating patients (p=.06), which was significant when combining the two groups (p=.01). In contrast, GFS decreased with stimulation in hallucinating patients (p=0.13), resulting in a significantly different GFS response when comparing subjects with and without AVH (p<.01). Our data suggests that normally, 40Hz stimulation leads to the activation of a synchronized network representing the sensory input, but in hallucinating patients, the same stimulation partly disrupts ongoing activity in this network.
Resumo:
Functional magnetic resonance imaging (fMRI) studies can provide insight into the neural correlates of hallucinations. Commonly, such studies require self-reports about the timing of the hallucination events. While many studies have found activity in higher-order sensory cortical areas, only a few have demonstrated activity of the primary auditory cortex during auditory verbal hallucinations. In this case, using self-reports as a model of brain activity may not be sensitive enough to capture all neurophysiological signals related to hallucinations. We used spatial independent component analysis (sICA) to extract the activity patterns associated with auditory verbal hallucinations in six schizophrenia patients. SICA decomposes the functional data set into a set of spatial maps without the use of any input function. The resulting activity patterns from auditory and sensorimotor components were further analyzed in a single-subject fashion using a visualization tool that allows for easy inspection of the variability of regional brain responses. We found bilateral auditory cortex activity, including Heschl's gyrus, during hallucinations of one patient, and unilateral auditory cortex activity in two more patients. The associated time courses showed a large variability in the shape, amplitude, and time of onset relative to the self-reports. However, the average of the time courses during hallucinations showed a clear association with this clinical phenomenon. We suggest that detection of this activity may be facilitated by examining hallucination epochs of sufficient length, in combination with a data-driven approach.
Resumo:
The encoding of verbal stimuli elicits left-lateralized activation patterns within the medial temporal lobes in healthy adults. In our study, patients with left- and right-sided temporal lobe epilepsy (LTLE, RTLE) were investigated during the encoding and retrieval of word-pair associates using functional magnetic resonance imaging. Functional asymmetry of activation patterns in hippocampal, inferior frontal, and temporolateral neocortical areas associated with language functions was analyzed. Hippocampal activation patterns in patients with LTLE were more right-lateralized than those in patients with RTLE (P<0.05). There were no group differences with respect to lateralization in frontal or temporolateral regions of interest (ROIs). For both groups, frontal cortical activation patterns were significantly more left-lateralized than hippocampal patterns (P<0.05). For patients with LTLE, there was a strong trend toward a difference in functional asymmetry between the temporolateral and hippocampal ROIs (P=0.059). A graded effect of epileptic activity on laterality of the different regional activation patterns is discussed.
Resumo:
Using functional magnetic resonance imaging during a verbal memory task, we investigated correlations of signal fluctuations within the hippocampus and ipsilateral frontal as well as temporal areas in temporal lobe epilepsy patients. Declarative memory abilities were additionally examined before and after temporal lobe epilepsy surgery. A significant difference exists in functional connectivity between patients whose mnemonic functions deteriorated and those who remained stable or improved. Univariate analyses showed significantly higher preoperative coupling between the hippocampus and Brodmann area 22 for the group that decreased in verbal learning. We suggest greater coupling to reflect higher functional network integrity. Postoperatively reduced learning ability in patients with higher preoperative coupling underlines the importance of hippocampal interaction with cortical areas for successful memory formation.
Resumo:
Cognitive functions in the child's brain develop in the context of complex adaptive processes, determined by genetic and environmental factors. Little is known about the cerebral representation of cognitive functions during development. In particular, knowledge about the development of right hemispheric (RH) functions is scarce. Considering the dynamics of brain development, localization and lateralization of cognitive functions must be expected to change with age. Twenty healthy subjects (8.6-20.5 years) were examined with fMRI and neuropsychological tests. All participants completed two fMRI tasks known to activate left hemispheric (LH) regions (language tasks) and two tasks known to involve predominantly RH areas (visual search tasks). A laterality index (LI) was computed to determine the asymmetry of activation. Group analysis revealed unilateral activation of the LH language circuitry during language tasks while visual search tasks induced a more widespread RH activation pattern in frontal, superior temporal, and occipital areas. Laterality of language increased between the ages of 8-20 in frontal (r = 0.392, P = 0.049) and temporal (r = 0.387, P = 0.051) areas. The asymmetry of visual search functions increased in frontal (r = -0.525, P = 0.009) and parietal (r = -0.439, P = 0.027) regions. A positive correlation was found between Verbal-IQ and the LI during a language task (r = 0.585, P = 0.028), while visuospatial skills correlated with LIs of visual search (r = -0.621, P = 0.018). To summarize, cognitive development is accompanied by changes in the functional representation of neuronal circuitries, with a strengthening of lateralization not only for LH but also for RH functions. Our data show that age and performance, independently, account for the increases of laterality with age.
Resumo:
Perceptual fluency is the subjective experience of ease with which an incoming stimulus is processed. Although perceptual fluency is assessed by speed of processing, it remains unclear how objective speed is related to subjective experiences of fluency. We present evidence that speed at different stages of the perceptual process contributes to perceptual fluency. In an experiment, figure-ground contrast influenced detection of briefly presented words, but not their identification at longer exposure durations. Conversely, font in which the word was written influenced identification, but not detection. Both contrast and font influenced subjective fluency. These findings suggest that speed of processing at different stages condensed into a unified subjective experience of perceptual fluency.